

University Examinations 2011/2012

FIRST YEAR, SECOND SEMESTER EXAMINATIONS FOR CERTIFICATE IN AGRICULTURE/DIPLOMA IN AGRICULTURAL EDUCATION AND EXTENSION

CHE 0100: CHEMISTRY

DATE: AUGUST 2011

TIME: 1¹/₂ HOURS

INSTRUCTIONS: Answer question **one** and any other **two** questions

QUESTION ONE - (30 MARKS)

(a) What are the four quantum numbers used to describe an electron in an orbital?		
	(4 Marks)	
(b) Give the electronic configuration of the following atoms whose atomic nu	mbers Z are	
given below		
(i) $Z = 13$	(2 Marks)	
(ii) $Z = 24$	(2 Marks)	
(iii)Z = 17	(2 Marks)	
(c) One of the isotopes of Boron may be represented as ${}^{11}_{5}B$.		
(i) How many protons are in this isotope?	(2 Marks)	
(ii) How many neutrons are present in the same isotope? (Show how y	ou arrive at	
your answers).	(2 Marks)	
(d) How many atoms are present in 22.4g of iron? (Fe = 55.847, NA = 6.02×10^{23})		
	(4 Marks)	
(e) Draw the orbital diagram for an element whose atomic number is 7.	(2 Marks)	
(f) The compound, Methylbenzoate is used in the manufacture of perfumes.	Experimental	
analysis shows that the compound consists of 70.58% carbon; 5.93% hydr	ogen; 23.49%	
Oxygen by mass. Given that the molecular weight of the compound is 13	6,	
(i) What is the empirical formula of the compound.	(3 Marks)	
(ii) What is the molecular formular of the compound?	(3 Marks)	
(NB: C = 12, O = 16, H = 1)		

- (g) Explain why the atomic radius of atoms decrease across any given period. (2 Marks)(h) Draw the molecular structure of the following compounds
 - (i) 2-Methylpentane. (1 Mark)

(ii) Butan-3-ol

(1 Mark) (1 Mark)

QUESTION TWO - (15 MARKS)

- (a) (i) Briefly discuss J.J. Thomson's proposed model of the atom. (4 Marks)
 (ii) How does J.J. Thomson's model differ from Rutherford's model of the atom? (4 Marks)
- (b) The diagram below represents the line spectra for hydrogen atom

(i) Identify the type of radiation found at positions A and B respectively.

(2 Marks)

- (ii) The wavelength of all lines in the visible part of the line spectrum is given by: $\frac{1}{\lambda} = R_H \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right], \text{ Where } R_H = 10967758m^{-1}$ Calculate the wavelength when $n_2 = 3$ (3 Marks)
- (iii)Which part of the spectrum does this radiation correspond to? Give reasons for your answer.(3 Marks)

QUESTION THREE – (15 MARKS)

- (a) The group VII A elements may generally be represented with symbol X
 - (i) Write the electronic configuration of the element Chlorine Z = 17, which is a group VIIA element.(2 Marks)
 - (ii) Explain briefly why group VIIA elements have high ionization energies.

(3 Marks)

(iii)Using the symbol X, write an equation to show how elements in this group form ions. (2 Marks)

(iv)In terms of the physical state, the melting point and the	he metallic character, briefly
discuss the variations down the group in these proper	ties among the elements of
group VIIA.	(4 Marks)
(b) Explain the anomalous properties of Flourine.	(4 Marks)

QUESTION FOUR - (15 MARKS)

- (a) State Hund's rule (2 Marks)
 (b) Use the noble gas core notation to write the electronic configuration of
 - (i) F(9) (ii) Si(14) (iii)Sc(21) (3 Marks)
- (c) Ammonia reacts with oxygen as shown

 $4\mathrm{NH}_{3(\mathrm{g})} + 5\mathrm{O}_{2(\mathrm{g})} \rightarrow 4\mathrm{NO}_{(\mathrm{g})} + 6\mathrm{H}_2\mathrm{O}_{(\mathrm{g})}$

(i) How many moles of O_2 are needed to produce 2.68 moles of NO_2 ?

(2 Marks)

- (ii) How many moles of NH_3 will react with 3.22 moles of oxygen. (2 Marks)
- (iii)How many moles of NO will be produced together with 0.753 moles of H_2O

(2 Marks)

(d) Nitrogen dioxide gas dissociates as shown in the equation below at equilibrium $2NO_{2(g)} \rightleftharpoons 2NO_{(g)} + O_{2(g)}$

What is the effect of

(i) Removing $O_{2(g)}$ from the system?	(2 Marks)
(ii) Increasing the pressure in the system?	(2 Marks)

QUESTION FIVE – (15 MARKS)

- (a) Differentiate between saturated and unsaturated aliphatic hydrocarbons. Give relevant examples of each type.
 (4 Marks)
 (b) Give IUPAC (Systematic) names of the following compounds
 (8 Marks)
 - (i) CH₃CHCHCH₃

```
CH3
|
(ii) CH3CHCH3
OH
|
(iii)CH3CH2CHCH3
```

(iv)CH₃CH₂CH₂COOH

(c) (i) Draw the orbital diagram to show the SP² hybridization of the carbon atom in the formation of ethene molecule.
 (1 Mark)

(ii) Draw all the structural isomers of the hydrocarbon, butane whose molecular formula is C_4H_{10} (2 Marks)