

EMBU UNIVERSITY COLLEGE

(A Constituent College of the University of Nairobi)

2015/2016 ACADEMIC YEAR

SECOND SEMESTER EXAMINATION

SECOND YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF ECONOMICS SMA 103: CALCULUS I

DATE: APRIL 8, 2016

TIME: 11:00-13:00

INSTRUCTIONS: Answer Question ONE and ANY Other TWO Questions.

QUESTION ONE

a) Evaluate the following limits:

(i)
$$\lim_{x \to 2} \frac{x^2 - 4}{\sqrt{x + 7} - 3}$$
 (4 marks)

(ii)
$$\lim_{x\to\infty} \frac{x+2}{x(x-2)}$$
 (2 marks)

b) Let a function f be defined by

$$f(x) = \begin{cases} kx^2 + 2x, & \text{if } x < 2\\ x^3 - kx, & \text{if } x \ge 2 \end{cases}$$

For what value(s) of the constant k is the function f continuous on $(-\infty, \infty)$? (4 marks)

c) Using the definition of derivative, determine
$$f'(x)$$
 given that $f(x) = \sqrt{2x+1}$ (6 marks)

d) For each of the following functions, determine $\frac{dy}{dx}$

(i)
$$y = 2x^5 + 2\sqrt{x} - \frac{3}{\sqrt[3]{x}} + \frac{4}{x^2}$$
 (2 marks)

(ii)
$$y = x \ln x$$
 (2 marks)

(iii)
$$y = \frac{2x^2 - 5e^x}{3 - \cos x}$$
 (3 marks)

(iv)
$$y = \sqrt[5]{2x^2 + 5x + 9}$$
 (2 marks)

e) If
$$x^2 + y^2 = 1$$
, determine $\frac{d^2y}{dx^2}$ in terms of x and y only. (3 marks)

f) In a certain company, the total cost (in Kenya shillings) of producing x items is given by $C(x) = \frac{1}{10}x^3 - 4x^2 + 20x + 5.$ Determine the marginal cost at a production level of 100 items. (2 marks)

QUESTION TWO

a) If
$$x = 2t^2$$
 and $y = e^t$, determine $\frac{d^2y}{dx^2}$ (simplify your final answer). (5 marks)

b) Determine the values of a and b that make the function f continuous everywhere

$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2}, & \text{if } x < 2\\ ax^2 - bx + 3, & \text{if } 2 \le x < 3\\ 2x - a + b, & \text{if } x \ge 3 \end{cases}$$
 (6 marks)

c) Determine the production level that will maximize profit for a company whose cost function is given by $C(x) = 16000 + 500x - 1.6x^2 + 0.004x^3$ and demand function is given by p(x) = 1700 - 7x (9 marks)

QUESTION THREE

(a) Determine $\frac{dy}{dx}$ in each of the following:

(i)
$$y = 5^x$$
 (4 marks)

(ii)
$$y = \frac{\ln(2x)}{2-x}$$
 (4 marks)

- (b) Determine an equation of the tangent line to the curve $2x^3 9xy + 2y^3 = 0$ at the point (1,2).
- (c) The total revenue received from the sale of x units of a certain product is given by the function $R(x) = 12x + 2x^2 + 6$. Determine the following:
 - (i) The average revenue (2 marks)
 - (ii) The marginal revenue. What is the interpretation of marginal revenue? (3 marks)
 - (iii) The marginal revenue at x = 50 (1 mark)
 - (iv) The actual revenue from selling the 51st item (2 marks)

QUESTION FOUR

(a) If
$$y = \sin^{-1}(2x)$$
, determine $\frac{dy}{dx}$ (2 marks)

(b) If
$$y = \frac{1}{x + 7e^x}$$
 determine $\frac{d^2y}{dx^2}$ (4 marks

- (c) Given that $z = 2x^3 + 6xy + 5y^3$, determine
 - (i) $\frac{\partial z}{\partial x}$ (1 mark)
 - (ii) $\frac{\partial z}{\partial y}$ (1 mark)
- (d) Given that $e^{\frac{x}{y}} = x y$, determine $\frac{dy}{dx}$ (4 marks)
- (e) Determine the absolute maximum and absolute minimum values of the function

$$f(x) = x^3 - 3x^2 + 1, -\frac{1}{2} \le x \le 4.$$
 Sketch the graph of f (8 marks)

QUESTION FIVE

- a) For the function $f(x) = e^{-\frac{x^2}{2}}$ determine f'''(x). (3 marks)
- b) Evaluate the limit $\lim_{x\to\infty} \frac{\sqrt{2x^2+1}}{3x-5}$ (2 marks)
- c) The total revenues (in million shillings) from lease of a building constructed through public-private partnership are approximated by the function $R(x) = \frac{140x^2}{2+x^2}$, where x is the number of years since the opening of the building for leasing.
 - (i) How fast are the total revenues changing 3 years after the building is opened for leasing? (3 marks)
 - (ii) What will be the total revenues in the long run? (3 marks)
- d) Use Lagrange Multipliers to find the maximum and minimum values of the function f(x,y) = 4x + 6y subject to the constraint $x^2 + y^2 = 13$. (9 marks)

