

MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 - Meru-Kenya.

Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293,

+254 789151411 Fax: 064-30321

Website: www.must.ac.ke Email: info@must.ac.ke

University Examinations 2013/2014

FIRST YEAR, SECOND SEMESTER EXAMINATIONS FOR DEGREE OF BACHELOR OF SCIENCE IN COMPUTER TECHNOLOGY

BCT 2202: PRINCIPLES OF ELECTRICAL ENGINEERING

DATE: APRIL 2014 TIME: 2 HOURS

INSTRUCTIONS: Answer question one and any other two questions.

QUESTION ONE – (30 MARKS)

(a) State Kirchoff's law. (4 N	Marks)
(b) Differentiate between short and open circuit. (4 N	Marks)
(c) Two resistors 4Ω and 8Ω are connected in parallel. If the total current is 16A, find the	
current through each resistor. (5 N	Marks)
(d) State three essential features of indicating analogue instruments. (3 N	Marks)
(e) Define the following terms:	
(i) Inductance (2 M	Marks)
(ii) Conductance (2 M	Marks)
(f) Three capacitors $3\mu F$, $6\mu F$ and $12\mu F$ respectively are connected in series to a	220V d.c.
supply. Find;	
(i) Total capacitance (3 M	Aarks)
(ii) Charge in each capacitor (2 N	Marks)
(g) A coil consists of 1000turns of copper wire and has a cross-sectional area of 0.5	8mm^2 .
The mean length per turn is 80cm and the resistivity of copper is $0.02\mu\Omega m$. Fi	nd the
resistance of the coil. (5 M	Marks)

QUESTION TWO – (20 MARKS)

- (a) State maximum power transfer theorem. (3 Marks)
- (b) Show that the power transfer, for the source to load is maximum when the resistance R of the load is equal to the internal resistance (r) of the source. (7 Marks)
- (c) A moving coil instrument gives full-scale deflection with 15mA and has a resistance of 5Ω . Calculate the resistance required:
 - (i) In parallel to enable the instrument to read up to 1A. (6 Marks)
 - (ii) In series to enable it to read up to 10V. (4 Marks)

QUESTION THREE – (20 MARKS)

- (a) Define the following terms:
 - (i) Passive elements (2 Marks)
 - (ii) Active elements (2 Marks)
- (b) Using node voltage method, find the current in the 3Ω resistor of the network shown in figure 1. (8 Marks)

- (c) A coil having an inductance of 0.5H has its current reduced from 5A to 2A in 0.05s.
 - (i) Calculate the mean value of the e.m.f induced in the cocl. (5 Marks)
- (d) What are the causes of transient disturbances? (3 Marks)

QUESTION FOUR – (20 MARKS)

(a) With the aid of circuit diagram differentiate between forward and reverse biased diode. (8 Marks)		
(b) Using Kirchoff's network calculate currents through the 18Ω resistor in the		
(c) State the assumptions made when calculating steady currents in electrical	circuits. (4 Marks)	