

EMBU UNIVERSITY COLLEGE

(A Constituent College of the University of Nairobi)

2015/2016 ACADEMIC YEAR

SECOND SEMESTER EXAMINATION

FOURTH YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

SCH 405: FURTHER CHEMICAL KINETICS AND ELECTROCHEMISTRY

DATE: APRIL 5,2016

TIME: 08:30-10:30

INSTRUCTIONS:

Answer Question ONE and ANY other two Questions

R = 8.314J/Kmol

Ag = 108; Cl = 35.5

QUESTION ONE

a) Define the following

(5 Marks)

- i) Activation energy
- ii) Complex reactions
- iii) Galvanic cell
- iv) Reaction mechanism
- v) Absolute ionic mobility
- b) Differentiate between weak and strong electrolytes, giving an example of each

(4 Marks)

- c) Consider a solution of 0.01 M MgCl₂ (aq) with an ionic strength of 0.030 M. Calculate the mean activity coefficient? (3 Marks)
- d) In a moving boundary experiment with 0.100 N KCl using 0.065 N LiCl as indicator solution, a constant current of 0.005893 amp was passed for 2130 seconds. The boundary

was observed to move through 5.6 cm in a tube of 0.1142 cm² cross section. Calculate the transport number of K⁺ and Cl⁻ ions. (4 Marks)

e) State three applications of electrolysis

- (3 Marks)
- f) Identify the intermediates and catalyst(if any) in the following reaction mechanism

$$ClO^- + H_2O \longrightarrow HOCl + OH^-$$

$$Br^- + HOCl \longrightarrow HOBr + Cl^-$$

$$OH^- + HOBr \longrightarrow H_2O + BrO^-$$
 (4 Marks)

g) State two limitations of collision theory

(2 Marks)

QUESTION TWO

- a) With examples, explain the following
 - i) Parallel reactions

(4 Marks)

ii) Consecutive reactions

(4 Marks)

iii) Reversible reactions

- (4 Marks)
- b) The activation energy of a first order reaction is 50.2 kJ/mol at 25°C. At what temperature will the rate constant double? (8 Marks)

QUESTION THREE

a) Explain the Debye-Huckel theory in reference to strong electrolytes

(10 Marks)

b) The specific conductance of saturated solution of silver chloride at 18°C is 1.24 × 10⁻⁶ mhos after subtracting that of water. The mobilities of Ag⁺ and Cl⁻ ions at this temperature are 53.8 and 65.3 respectively. Calculate the solubility of silver chloride in grams per litre. (8 Marks)

QUESTION FOUR

a) The figure below shows a standard Hydrogen Electrode (SHE)

- i) Explain why the SHE is important in calculating cell potentials (4 Marks)
- ii) Write the standard half-cell equation for the SHE (2 Marks)
- Explain why it is important to use an inert electrode in the SHE and give two examples of inert electrodes (4 Marks)
- b) Describe the calomel electrode

(10 Marks)

QUESTION FIVE

- a) For the reaction, $2NO_2$ (g) + F_2 (g) \rightarrow $2NO_2F$ with a rate law = k [NO₂][F₂]: i) Write the steps for a bimolecular elementary process. (7 Marks)
 - ii) Identify which elementary process is the rate determinant and which one is the fast reaction. (3 Marks)
- b) Draw a potential-energy diagram for an uncatalyzed exothermic reaction. On the same diagram, indicate the change that results on the addition of a catalyst. Discuss the role of a catalyst in changing the rate of reaction. (10 Marks)

--END--

