

# **UNIVERSITY EXAMINATIONS 2012/2013**

## SECOND YEAR SECOND SEMESTER EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE & TECHNOLOGY (MAIN CAMPUS)

CCS 209: COMPUTER ARCHITECTURE AND ORGANIZATION

Date: 18th July, 2013

Time: 11.00 a.m. - 1.00 p.m.

### **INSTRUCTIONS:**

SECTION A:

Question ONE is COMPULSORY.

SECTION B:

Questions 2-5: Answer ANY TWO questions of

your choice.

#### SECTION A {30 MARKS}

Q1. (a) With the help of examples give a clear distinction between computer architecture and computer organization.

[6 marks]

- (b) Outline the THREE main characteristics of von Neumann architectures. [6 marks]
- (c) With the help of sketches show a functional view of the computer. [4 marks]
- (d) Assume that the OPcode for SUB is a decimal 7, X and Y correspond to memory addresses 46 and 78 respectively. Write a representation of the instruction SUB X, Y as it would appear in the memory if the format of the instruction is as shown in figure 1.1.

|      | OP code | Address 1 | Address 2 |
|------|---------|-----------|-----------|
| Bits | 8       | 16        | 16        |

Figure 1.1.

[4 marks]

(e) Copy and fill table 1.1. for the various Random Access Memory (RAM) sizes.

Table 1.1. RAM sizes

| Number of bits per cell | Maximum memory size | Short hand for<br>memory size in bytes |
|-------------------------|---------------------|----------------------------------------|
| 10                      |                     |                                        |
| 20                      |                     |                                        |
| 30                      |                     |                                        |
| 40                      |                     |                                        |

[4 marks]

(f) A computer system is used to control the speed of a motor. An output port is connected to the motor speed, and a signed integer is written to the port to set the motor speed. The computer is configured so that when an OUT instruction is executed, the contents of register 1 are placed on the data bus and sent to I/O port at the address in register 2. Implement the motor speed control via the following methods:

Programmed I / O.

[3 marks]

(ii) memory-mapped I / O.

[3 marks]

#### SECTION B {20 MARKS EACH}

- Q2. (a) With the help of diagrams explain how a parallel circuit can be used to perform addition or subtraction applying 2'complement system. [10 marks]
  - (b) Using a multiplier circuit briefly explain how it can be used to perform binary multiplication of 1101 by 1011. [10 marks]
- Q3. (a) With the help of Memory Address register (MAR), Memory Data Register (MDR) and a decoder circuit briefly describe how data can be stored or retrieved from a RAM system applying
  - One-dimensional organization

[8 marks]

(ii) Two-dimensional organization

[10 marks]

- (b) Briefly outline the shortcomings of the technique used in Q3 (a)(i). [2 marks]
- Q4. (a) With the aid of sketches explain in details how a programmable

- interrupt controller is used in the interrupt handling process in a multiple interrupt system. [10 marks]
- (b) Using diagrams explain in details how a direct memory access (DMA) operates. [10 marks]
- Q5. (a) Briefly outline the effects of the addressing modes of the operands appearing in a machine-language instruction.

  [6 marks]
  - (b) Write an assembly language program that performs the calculation

$$d = \frac{\sqrt{t^3 - 3t^2w + 3tw^2 + w^3}}{t^2 + w^2}$$

where d, t and w are symbolic locations.

Do this using:

(i) One-address system

[8 marks]

(ii) Three-address system

[6 marks]