

MASENO UNIVERSITY UNIVERSITY EXAMINATIONS 2016/2017

FIRST YEAR FIRST SEMESTER EXAMINATIONS FOR THE CERTIFICATE IN BRIDGING MATHEMATICS

CITY CAMPUS

MMA 002: VECTORS AND GEOMETRY

Date: 22nd November 2016

Time: 2.00 - 5.00pm

INSTRUCTIONS:

Answer question ONE and any other TWO questions.

QUESTION ONE (Compulsory)

[30 Marks]

- (a) If $A = \{a, b, c\}$ and $B = \{d, e\}$, find:
 - (i) P(A), the power set of A.

[2 Marks]

(ii) $A \times B$.

[2 Marks]

- (b) Evaluate the following:
 - (i) (-2,3,5) 3(-7,-4,8)

[2 Marks]

(ii) -2(5, -8, 4) + 4(-4, 0, -2)

[2 Marks]

- (c) (i) Differentiate between additive identity and additive inverse of a vector.
 [2 Marks]
 - (ii) Find the additive identity and additive inverse of the vector $\underline{i} + 3\underline{i} 4\underline{k}$. [2 Marks]
- (d) (i) Differentiate between linear independence and linear dependence of vectors.
 [2 Marks]
 - (ii) Consider the vectors $\underline{u} = (1, 2, -1)$ and $\underline{v} = (6, 4, 2)$ in \mathbb{R}^3 . Show that $\underline{w} = (9, 2, 7)$ is a linear combination of \underline{u} and \underline{v} . [3 Marks]
- (e) Given that vectors $\underline{u} = 3\underline{i} 4\underline{j} 2\underline{k}$ and $\underline{v} = \underline{i} 4\underline{j} + \underline{k}$, find:
 - (i) u v

[3 Marks]

(ii) *u* × *v*

[4 Marks]

(f) Normalize the following vectors:

(i)
$$i - 3j + k$$

[3 Marks]

(ii)
$$3i + 4j - 2k$$

[3 Marks]

QUESTION TWO

[20 Marks]

- (a) Consider the vectors $\underline{u} = (1,2,-1)$ and $\underline{v} = (6,4,2)$ in \mathbb{R}^3 . Show that $\underline{w} = (0,8,-8)$ is a linear combination of \underline{u} and \underline{v} , and that $\underline{w}' = (4,-1,8)$ is not a linear combination of \underline{u} and \underline{v} . [6 Marks]
- (b) Use dot product to find the sides of the parallelogram with co-ordinates (1, 2), (7,2), (4,4) and (10,4).
 [8 Marks]
- (c) Determine whether the vectors $\underline{i} = (1,0,0)$, $\underline{j} = (0,1,0)$ and $\underline{k} = (0,0,1)$ are linearly dependent or linearly independent. [6 Marks]

QUESTION THREE

[20 Marks]

Let y = (3, 2, -1), y = (0, 2, -3) and y = (2, 6, 7). Compute

(a)
$$\underline{v} \cdot (4\underline{u} - \underline{v})$$
 [4 Marks]

(b)
$$u \times (v - 2w)$$
 [6 Marks]

(c)
$$(\underline{u} \times \underline{v}) \times (\underline{v} \times \underline{w})$$
 [10 Marks]

OUESTION FOUR

[20 Marks]

- (a) A man wishes to empty a cylindrical water tank with a diameter of 10 m. The outlet valve is on the opposite side of the tank, due north of him. Obtain:
 - (i) the displacement of the valve from his present location, and
 - (li) the minimum distance he must walk in order to open the valve.

[3 Marks]

(b) Let y = (2, -2, 3), y = (1, -3, 4) and y = (3, 6, -4). Evaluate the expression:

(i)
$$|u+u+v|$$
 [3 Marks]

(i)
$$|-2u|+2|u|$$
 [3 Marks]

(ii)
$$|3u - 5v + w|$$
 [3 Marks]

(iii)
$$\left| \frac{1}{|w|} \underline{w} \right|$$
 [3 Marks]

(c) Use diagrams to show the following:

(i)
$$\underline{u} + \underline{v} = \underline{v} + \underline{u}$$
 [2 Marks]

(ii)
$$u + (v + w) = (u + v) + w$$
 [3 Marks]

QUESTION FIVE

[20 Marks]

- (a) Differentiate between:
 - (i) commutative and associative property of vectors. [2 Marks]
 - (ii) position vector and displacement vector. [2 Marks]
- (b) Find the distance between P1 and P2.

(i)
$$P_1(-3,6)$$
 and $P_2=(-1,-4)$. [2 Marks]

(ii)
$$P_1(7, -5, 1)$$
 and $P_2 = (-7, -2, -1)$. [3 Marks]

(c) Let
$$y = (-1, 2, 5)$$
. Find all scalars k such that $|ky| = 4$. [6 Marks]

(d) For which values of k do the following vectors become linearly dependent.

$$\underline{u} = \left(k, -\frac{1}{2}, -\frac{1}{2}\right), \qquad \underline{v} = \left(-\frac{1}{2}, k, -\frac{1}{2}\right), \qquad \underline{w} = \left(-\frac{1}{2}, -\frac{1}{2}, k\right)$$
 [5 Marks]