

MASENO UNIVERSITY **UNIVERSITY EXAMINATIONS 2016/2017**

THIRD YEAR FIRST SEMESTER EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE (ECOHIM) WITH INFORMATION **TECHNOLOGY**

CITY CAMPUS

MMA 107: MATHEMATICS II

Date: 30th November, 2016

Time: 9.00 - 12.00pm

INSTRUCTIONS:

- Answer Questions ONE (Compulsory) and any other TWO.
- Observe further instructions on the answer booklet

MASENO UNIVERSITY

ISO 9001:2008 CERTIFIED

Question 1 (30 Marks)

- a) Show that $(4+3\sqrt{x})^2$ can be written as $16+k\sqrt{x}+9x$, where k is a constant to be found (3 Marks)
- b) Find $\int (4+3\sqrt{x})^2 dx$ (6 Marks)
- c) The function f is defined by

$$f\colon\! x\to\frac{2x+3}{x-1}\left\{x\in\mathbb{R},x>1\right\}$$

Find

i)
$$f^{-1}(x)$$
 {6 Marks}

ii) the range of
$$f^{-1}(x)$$
 (3 Marks)

iii) the domain of
$$f^{-1}(x)$$
 [2 Marks]

d) Given $f(x) = x^3 + 3x^2 + 5$ find

i)
$$f''(x)$$
 (4 Marks)

ii)
$$\int_{1}^{2} f(x)dx$$
 (6 Marks)

Question 2 (20 Marks)

The curve C has equation

$$y = 6 - 3x - \frac{4}{x^3}, x \neq 0$$

a) Use calculus to show that the curve has a turning point P when $x = \sqrt{2}$

(5 Marks)

- b) Find the x-coordinate of the other turning point Q on the curve. (3 Marks)
- c) Find

$$\frac{d^2y}{dx^2}$$

(2 Marks)

Hence or otherwise, state with justification, the nature of each of these turning points P and Q. (4 Marks)

d) On the graph paper provided, sketch the curve C (6 Marks)

Question 3 (20 Marks)

A solid glass cylinder, which is used in an expensive laser amplifier, has a volume of 75π cm³. The cost of polishing the surface area of this glass cylinder is £2 per cm² for the curved surface area and £3 per cm² for the circular top and base areas. Given that the radius of the cylinder is r cm,

a) show that the cost of the polishing, £C, is given by

$$C = 6\pi r^2 + \frac{300\pi}{r}$$

(10 Marks)

- b) Use calculus to find the minimum cost of the polishing, giving your answer to the nearest pound. (8 Marks)
- c) Justify that the answer that you have obtained in part (b) is a minimum.

(2 Marks)

Question 4 (20 Marks)

a) Given
$$f(x) = sin(2x^3)$$
 determine $f'(x)$ (6 Marks)

b) Find $\int 10x \left(x^{\frac{1}{2}}-2\right) dx$ giving each term in its simplest form (6 Marks)

c) The Figure above shows a sketch of part of the curve C with equation

$$y=10x\left(x^{\frac{1}{2}}-2\right), x\geq 0$$

The curve C starts at the origin and crosses the x-axis at the point (4, 0). The area, shown shaded in Figure, consists of two finite regions and is bounded by the curve C, the x-axis and the line x = 9. Use your answer from part (a) to find the total area of the shaded regions. (8 Marks)

Question 5 (20 Marks)

- a) Given $f(x) = 3xe^{x^3}$, determine f'(x) (5 Marks)
- b) On the graph paper provided, sketch the curve $y = x^3 6x^2 + 5x$ (7 Marks)
- c) Use calculus to find the total area under the curve bounded by x = 0 and x = 2 (8 Marks)