

MASENO UNIVERSITY UNIVERSITY EXAMINATIONS 2016/2017

SECOND YEAR FIRST SEMESTER EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE WITH INFORMATION TECHNOLOGY

MAIN CAMPUS

MMA 215: CALCULUS

Date: 12th December, 2016

Time: 12.00 - 3.00 pm

INSTRUCTIONS:

- Answer question ONE and any other TWO questions.
- · Show all the necessary workings
- · Start each question on a new page.
- · Observe further instructions on the answer booklet.

MASENO UNIVERSITY

ISO 9001:2008 CERTIFIED

Question One [30marks]

i) Use part one of the Fundamental Theorem of Calculus to find $\frac{dy}{dx}$ a.)

$$y = \int_{1}^{x^2} \cos t dt$$

ii) Use the definition of the definite integral to evaluate the integral

[5mks]

$$\int_{1}^{4} (2x+3)dx$$

b) Evaluate the following integrals

g s in a region statement of

i) $\int \frac{4x+3}{4x^2+6x-1} dx$

ii) $\int t^2 e^t dt$

4mks

- c) Find the arc length of the graph of $(y-1)^3 = x^2$ on the interval [0, 8].5mks
- d) Evaluate the improper integral

[5mks]

$$\int_{-\infty}^{\infty} \frac{e^x}{1 + e^{2x}} dx$$

e) Find the area of the region bounded by the graphs of $f(x) = 2 - x^2$ and g(x) = x. [5mks]

Question Two [20 marks]

a) Use integration by parts to show that

[8mks]

$$\int \sin^n x dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x dx,$$

hence evaluate $\int \sin^3 x dx$

b) Evaluate the following integrals

to the second

5mks

7mks

Non-

Question Three [20 marks]

a) Approximate the value of π using the Simpson's approximations of

$$\int_0^1 \frac{4}{1+x^2} dx$$

for n=4. Estimate also the error.

10mks

b) Evaluate the following definite integrals

i) $\int_0^4 f(t)dt$ where

4mks

$$\int_{\mathbb{R}^{n}} \frac{2t}{1-3t^{2}} dt = \begin{cases} 2t, & \text{if } t > 1 \\ 1-3t^{2}, & \text{if } t \leq 1 \end{cases}$$

ii)
$$\int_3^6 |2x - 10| dx$$
 [6mks]

Question Four [20 marks]

a) An electric cable is hung between two towers that are 200 feet apart. The cable takes the shape of a catenary whose equation is

$$y = 75 \left(e^{\frac{12}{160}} + e^{\frac{12}{160}} \right), -100 \le x \le 100.$$

Find the arc length of the cable between the two towers.

1 1 Nys 6mks

b) For what values of p is the following integral convergent?

8mks

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx.$$

c) Find the volume of the solid obtained by rotating the region bounded by $y = x^3 + x + 1$; x = 1 and y = 1 about the line x = 2. [6mks] u Ala ne spara a se e sur e 1967

Question Five [20marks]

a) Phenomena such as waiting times and equipment failure times are commonly modelled by exponentially decreasing probability density functions of the form

 $f(t) = \begin{cases} 0, & \text{if } t < 0 \\ ce^{-ct}, & \text{if } t \ge 0 \end{cases}$

i) Find the mean μ of the exponential distribution. (Take $\mu=$ $\int_{-\infty}^{\infty} t f(t) dt$ 5mks

- ii) Suppose the average waiting time for a customer's call to be answered by a company representative is five minutes $(\mu = 5)$, find the probability that a call is answered during the first minute. [4mks]
- b) Assume that in a certain city the temperature (in $^0\mathrm{F}$) t hours after 9 A.M is represented by the function

$$T(t) = 50 + 14\sin\left(\frac{\pi t}{12}\right)$$

Find the average temperature in that city during the period 9 A.M to 9 P.M. [4mks]

- - i) $\int \ln x dx$

3mks

ii) $\int \sin^5 x \cos^2 x dx$

[4mks]

END