

MASENO UNIVERSITY **UNIVERSITY EXAMINATIONS 2016/2017**

FIRST YEAR SECOND SEMESTER EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE WITH INFORMATION TECHNOLÓGY

MAIN CAMPUS

MMA 107: MATHEMATICS II

Date: 13th June, 2017

Time: 8,30 - 11.30 am

INSTRUCTIONS:

· Answer question ONE and any other TWO questions.

Question 1: Compulsory (30 marks)

- a) Define the following terms
 - i). A function
 - ii). Domain of a function
 - iii). Range of a function
 - iv). Codomain of a function (4mks)
- b) Find the inverse of $f(x) = \frac{1}{x^2} 1$ (3mks)
- c) Differentiate the function $y = x^3 30x^2 + 6000$ from the first principle (4mks)
- d) Evaluate $A = \int_1^5 \left(\frac{x}{\sqrt{(2x-1)}} \right) dx$ using change of variables (5mks)
- e) i). Differentiate between odd function and an even function
 - ii). Show that $3x^2 x^4$ is an even function (5mks)
- f) Use the $\varepsilon \delta$ definition of a limit to prove that

$$\lim_{x \to \infty} (3x - 2) = 4 \tag{6mks}$$

g). Evaluate $\frac{d}{dx} \tan x$ (3mks)

Question 2 (20 marks)

- a) Find the turning points of the curve $y = 4x^3 15x^2 18x$ hence determine the maximum and minimum of y (13mks)
- b) Use implicit differentiation to find $\frac{dy}{dx}$ given that $y^3 + y^2 5y x^2 = -4$ (4mks)
- c). Evaluate the limits

$$\lim_{x \to 2} \frac{4(x^2 - 4)}{x - 2} \tag{3mks}$$

1

Question 3 (20 marks

- a) Let f(x) = (x-2)(8-x) for $2 \le x \le 8$
 - i). Find f(6) and f(-1)
 - ii). What is the domain of definition of f(x)a(1
 - iii). Find (1-2t) and give the domain of the definition
- iv). Find f(f(3)) for f(f(3)) = (6)0mksb) The distance x metres moved by a body in t seconds is given by $x = 3t^3 - \frac{11}{2}t^2 + 2t + 5$. Find e= 8/3-11-17+ 8+ +
 - i). its velocity after t seconds
 - ii).its velocity at the start and after 4 seconds
 - iii) the value of t when the body comes to rest
 - iv). the acceleration after t seconds
 - v). the acceleration after 2 seconds
 - vi). the value of t when the acceleration is $16m/s^2$ and
 - vii).the average velocity over the third second (10mks)

Question 4 (20 marks)

- a) Determine the area of the region bounded by $y = 2x^2 + 10$, (10mks) y = 4x + 16, x = -2 and x = 5
- b) Find $\frac{dy}{dx}$ for $y = (x^2 + 1)^3$ (4mks)
- c). Find the equation of the tangent and the equation of the normal to the (6mks) curve $y = x^3 + 2x + 1$ at a point (1, 4)

Question 5 (20 marks)

a) The rate at which the body cools is given by the equation $\frac{d\theta}{d\theta} = -k\theta$, where θ is the temperature of the body above its surroundings and k is constant. Solve the equation for θ given that at t = 0, $\theta = \theta_0$ (10mks)

b) Find the general solutions of the following differential equations

i).
$$2xy\frac{dy}{dx} = 1 + y^2$$

ii).
$$\frac{dy}{dx} = 5x^2 + \cos 3x \tag{5mks}$$

c). Find the particular solution of $\frac{dy}{dx} = 3e^{2x-3y}$ given that y = 0 when x = 0 (5mks)