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JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY

UNIVERSITY EXAMINATIONS 2016/2017

EXAMINATION FOR THE  DEGREE OF MASTER OF SCIENCE IN PURE MATHEMATICS 

SMA 3100: THEORY OF INTEGRATION I

DATE:  JUNE, 2017	                              			                     TIME: 3 HOURS   

INSTRUCTIONS: 	 ANSWER QUESTION ONE (COMPULSORY) AND ANY
 	 OTHER TWO QUESTIONS

QUESTION ONE: 30 MARKS



a.	Define a function D on [a,b], (a,b)by 

				1, if 
	D
				0, if 

Where Q is the set of all rational numbers.


i.	Determine the set of discontinuities of the function D		(2 marks)

ii.	Determine the Riemann Integrability of  D				(5 marks)


b.	if A

	 then 								(4 marks)



c.	Let (be a measure space and suppose f:   is integrable. Show  

         that f is finite-valued -a.e on	(7 marks)


d.	Let  be any measurable space, were A is a-algebra of supsets of .

i.	Show that any constant function  on  is A – measurable
(3 marks)




ii.	Show that if : 1e is A- measurable then c.f is A-measurable, c      	              						(4 marks)


e.	If is the Lebesgue measure space on [0,I], and g =o, gn=n for   


           each n in , show that  = 1


QUESTION TWO: 20 MARKS



a.	Show that if is an at most countable subset of  , then 
											(10 marks)

Hence,

b.	Show that every internal with distinct end points is uncountable.(5 marks)

c.	Let  -algebra of subset of X
           and let E be any subset of .  Show that EA 

            if and only if the characteristic function  defined by:-


			0, if xE

	  = 

			1, if E

	is A – measurable 								(5 marks)

QUESTION THREE: 20 MARKS

a.	i.	Let  be an extended real – valued function.  Define the  
		functions +, -							(2 marks)



	ii.	Let be, a measurable space and  a  A- measurable
 		function.  Show that +, and - are also A-measurable
											(8 marks)

b.	Let be a measure space, where A is a  - algebra of subsets of X.  Show that if + (then
	(+(

	=.                            			(10 marks)


QUESTION FOUR: 20 MARKS


a.	State and prove Fatou’s Lemma
	
	(you may apply M. C. T in your proof)				(10 marks)

b.	Let ( be the Lebergue measure space on  and let

           for each 

          Show that converges uniformity to , but that

          

	Why does this not contradict the Monotone Convergence Theorem 
 (M. C.T)?

Does Faton’s Lemma apply?						(10 marks)
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