

UNIVERSITY OF EMBU

2017/2018 ACADEMIC YEAR SECOND SEMESTER EXAMINATIONS

FOURTH YEAR MAIN EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION SCIENCE.

SPH 404: STATISTICAL PHYSICS

DATE: APRIL 4, 2018

TIME: 8:30-10:30AM

INSTRUCTIONS:

Answer Question ONE and ANY Other TWO Questions.

QUESTION ONE (30 MARKS)

a)	Differentiate between micro and macro states	(2 marks)
b)	Distinguish between Fermi-Dirac and Bose-Einstein statistics	(4 marks)
c)	An ideal gas that obeys Maxwell Boltzman statistics has N particles at a temperature T.	
	find the internal energy	(2 marks)
d)	Explain the principle of a priori assumption	(2 marks)
e)	Demonstrate that entropy as given by the Boltzmann expression, $S=kln\Omega$, is an	n extensive
	quantity	(3 marks)
f)	Briefly explain the partion function	(2 marks)
g)	The partion function of a system is given by Ln $Z= aT^4V$, where a is a con-	nstant, T is
	absolute temperature and \boldsymbol{V} is the volume. Calculate the internal energy of the	system
		(3 marks)
i)	Distinguish between fermions and bosons	(2 marks)
j)	Explain briefly Pauli's exclusion principle	(2 marks)

Knowledge Transforms

- k) A system consists of three independent particles localized in space. Each particle has states of energy 0 and ε. When this system is in thermal equilibrium with a heat bath at temperature, T, calculate its partition function. (the respective degeneracies are 1,3,3,1)
 (3 marks)
 - Explain the features of a system of a small black body placed inside a chamber with perfect insulating walls (3 marks)
 - m) Bosons are quantum particles with symmetric wavefunctions. Explain. (2 marks)

QUESTION TWO (20MARKS)

a) For a simple one dimensional harmonic oscillator in equilibrium at a temperature T, with H

$$= \frac{p^2}{2m} + \frac{1}{2}k_0x^2,$$

$$\in_j = (j + \frac{1}{2})\hbar\omega. \ j = 0, 1, 2....$$

i) Show that the partion function $Z = \frac{e^{\frac{-\beta\hbar}{2\omega}}}{1 - e^{\frac{-\beta\hbar\omega}{2\omega}}}$ (5 marks)

ii) Obtain an expression for the average energy of the oscillator. (5 marks)b) For a system in thermal equilibrium with a larger system(canonical ensemble), the fundamental relation for the Helmholts free energy, is given by

A(V, T) = -KTLn
$$Q_N$$

where $Q_N = \frac{1}{N!} \left(\frac{N}{V} (2\pi m k T)^{\frac{3}{2}} \right)^N$
i) Show that $A = \left[NKT \left[Ln \frac{N}{V} \left(\frac{h^2}{2\pi m k T} \right)^{\frac{3}{2}} - 1 \right]$ (3 marks)

ii) Obtain expressions for the pressure, entropy and internal energy of the system.

(7 marks)

QUESTION THREE (20MARKS)

a) Consider a one level system having energy $E = -NKT \ln \left(\frac{v}{v_0}\right)$. v_0 is a constant.

- i) Write down Z (the partion function) (5 marks)
- ii) Find the average pressure of the system (5 marks)
- b) In a sample of hydrogen gas at 25 ^{0}c ,

1

- i) what proportion of the atoms are in the first exited electronic state if it lies
 1000Kj/mole above the ground state (5 marks)
- ii) The proportion of the atoms in the excited state if $T = 10^7 K$. (5 marks)

QUESTION FOUR (20MARKS)

a) For a non-interructing system of gas molecules, the measure of disorder can be expressed as,

S (E,v) = NK ln[
$$V(\frac{4\pi mE}{3Nh^2})$$
] ^{$\frac{3}{2}$} + $\frac{3}{2}$ NK. [the symbols have the usual meanings]

i) Show that the internal energy U(S,V) can be written as

$$U(s,v) = \left(\frac{3h^2}{4\pi m}\right) \frac{N}{V} Exp\left(\frac{2S}{3NK} - 1\right)$$
(7 marks)

- b) Obtain expressions for
 - i) The absolute temperature (5 marks)
 - ii) Heat capacity at constant volume (5 marks)
 - iii) The equation of state (3 marks)

QUESTION FIVE (20 MARKS)

A system of four particles each of which can exist among the four energy levels ε , 2ε , 3ε and 4ε . The respective degeneracies are 1, 1, 2, 2. The total energy for the system is 10ε .

- i) List the number of macro states for Bose- Einstein statistics (5 marks)
- ii) List the number of microstates associated with the macro states above (15 marks)

--END---

