

UNIVERSITY OF EMBU

2016/2017 ACADEMIC YEAR

FIRST SEMESTER EXAMINATION

THIRD YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

SPH 305: CLASSICAL MECHANICS

DATE: DECEMBER 2, 2016

TIME: 2:00-4:00PM

INSTRUCTIONS:

Answer Question ONE and ANY Other TWO Questions.

Constants: : Unless otherwise specified, take;

- Gravitational acceleration, $g = 9.8 \text{ m.s}^{-2}$
- Speed of light, $c = 3.0 \times 10^8 \text{ m.s}^{-1}$
- Gravitational constant, $G = 6.67 \times 10^{-11} \, m^3 / s^2$. kg. (or $G = 6.67 \times 10^{-11} \, Nm^2 / kg^2$)
- Earth's mass, M=5.98 X 10²⁴ kg.
- Earth's radius, $R_E = 6.37 \times 10^6 \text{ m}$.
- Density of the earth, $\rho = 5.51 \times 10^3 \text{ kgm}^{-3}$

QUESTION ONE (30 MARKS)

a) State the three Newton's laws of motion.

(3 marks)

b) Let \vec{r} be the radius vector of a particle of mass m from a given origin. If the vector velocity \vec{v} , is given by $\vec{v} = \frac{d\vec{r}}{dt}$, stating all assumptions and the conservation theorems show that if momentum is conserved then $\vec{N} = \frac{d\vec{L}}{dt}$, where \vec{N} and \vec{L} have their usual meaning.

c) i) State the Parallel Axis Theorem.

(2 marks)

ii) Verify the parallel-axis theorem for a stick of mass m and length l

(5 marks)

- d) Show that for a single particle with constant mass the equation of motion implies the following differential equation for the kinetic energy: $\frac{dT}{dt} = \mathbf{F} \cdot \mathbf{v}$, while if the mass varies with time the corresponding equation is; $\frac{d(mT)}{dt} = \mathbf{F} \cdot \mathbf{p}$ (5 marks)
- e) i) State the Hamilton's Principle

(2 marks)

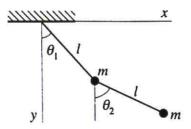
ii) Derive the Hamiltonian for a single particle of mass m moving in one dimension subject to a conservative force with a potential U(x). (5 marks)

QUESTION TWO (20 MARKS)

- a) A mass hangs from a mass less string of length l. Conditions have been set up so that the mass swings around in a horizontal circle with the string making an angle θ with the vertical.
 What is the angular frequency, ω of this motion? Under what condition does this reduce to the frequency of a plane pendulum? (10 marks)
- b) Consider a block of soft wood on a horizontal frictionless surface. A compression spring with spring constant k and uncompressed length l connects the block to a wall. The block has mass M, and the spring has negligible mass. At t = 0 a gun fires a bullet of mass m and speed v_0 into the block, which moves back at initial speed V_i due to the impulse. Find the speed of the bullet. (10 marks)

QUESTION THREE (20 MARKS)

a) A double pendulum consists of a mass suspended by a mass less string of length l from which is suspended another such string (see Figure).



i) Write the Lagrangian of the system for $\theta_1, \theta_2 \ll 1$

(10 marks)

ii) Derive the equations of motion

(5 marks)

b) A one-dimensional harmonic oscillator has Hamiltonian

$$H = \frac{1}{2} P^2 + \frac{1}{2} \omega^2 q^2$$

Write down Hamiltonian's equation and find the general solution.

(5 marks)

QUESTION FOUR (20 MARKS)

- a) i) Show that the group velocity associated with a free non-relativistic particle is the classical velocity of the particle.
 (5 marks)
 - ii) For a relativistic particle with rest mass m and moving with the velocity of light c, the relation for total energy E and momentum p for a relativistic particle is given by

$$E^2=c^2p^2\ +m^2c^4$$
. Show that the product of group velocity v_g and the phase velocity $v_p,\,v_gv_p=c^2$.

(5 marks)

- b) Two particles of masses m_1 and m_2 are connected by a rigid massless rod of length r to constitute a dumbbell which is free to move in a plane. Show that the moment of inertia of the dumbbell about an axis perpendicular to the plane passing through the centre of mass is ur^2 where u is the reduced mass. (5 marks)
- c) A rod of length L has a non-uniform density. The mass per unit length of the rod, λ , varies as $\lambda = \lambda_0(x/L)$, where λ_0 is a constant and x is the distance from one end. Find the center of mass of the rod. (5 marks)

QUESTION FIVE (20 MARKS)

- a) A central force is defined to be a force that points radially and whose magnitude depends only on r. That is, $F(r) = F(r)^r$. Show that a central force is a conservative force by explicitly showing that $\nabla \times \mathbf{F} = 0$. (6 marks)
- b) Show that if a particle describes a circular orbit under the influence of an attractive central force directed towards a point on the circle, then the force varies as the inverse fifth power of distance.

 (8 marks)

c)	If a particle is subjected	to a central	force only,	then its	angular	momentum	is conserved.
----	----------------------------	--------------	-------------	----------	---------	----------	---------------

That is, If
$$V(r) = V(r)$$
;, then $\frac{dL}{dt} = 0$. Prove this. (6 marks)