

# UNIVERSITY OF EMBU

### 2016/2017 ACADEMIC YEAR

### SECOND SEMESTER EXAMINATION

### THIRD YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION SCIENCE

### SPH 302: THERMODYNAMICS

### DATE: APRIL 5, 2017

TIME: 2:00-4:00PM

### **INSTRUCTIONS:**

Answer Question ONE and ANY Other TWO Questions.

| Constants:                                              | $e = 1.6 \times 10^{-19} C$                       |  |
|---------------------------------------------------------|---------------------------------------------------|--|
| $m_e = 9.1 \ge 10^{-31} \text{ kg}$                     | $h = 6.6 \times 10^{-34} JS$                      |  |
| $_0 = 8.86 \text{ x } 10^{-12} \text{ C}^2/\text{Nm}^2$ | $c = 3.0 \times 10^8  ms^{-1}$                    |  |
| Y for brass = $10^{11}$ Nm <sup>-2</sup>                | Y for steel = $2 \times 10^{11}$ Nm <sup>-2</sup> |  |
| C water = 4200J/ug <sup>o</sup> k                       | $C_{pb} = 460 J/\mu g^{o} k$                      |  |

## **QUESTION ONE (30 MARKS)**

- a) An internal combustion engine takes in a mixture of fuel and air at 27 °C and the highest temperature after combustion is 427 °C. Calculate the Carnot efficiency of an engine working between these two limits of temperature. (3 marks)
- b) A gas was heated such that its volume increased from 82 cm<sup>3</sup> while the pressure remained constant at 1 X 10<sup>5</sup> N/m<sup>2</sup>. Find the heat needed for the work done against the external pressure.
  (2 marks)
- c) A 750 g block of steel heats in stamping when subjected to a stroke by a hammer of mass 400 kg; the velocity of the hammer at the instant of the hit is 7.0 ms<sup>-1</sup>, and 60 % of the hammer energy is used up in the heating of steel. What is the rise in temperature of the block? (4 marks)

Knowledge Transforms

Page 1 of 3



d) Describe the equilibrium state of a system and the conditions for its achievement. (3 marks)

| e) | Differentiate between availability and irreversibility.                 | (2 marks) |  |
|----|-------------------------------------------------------------------------|-----------|--|
| f) | By giving an example, explain thermodynamic potentials.                 | (3 marks) |  |
| g) | Describe important features of the liquid-gas condensation transitions. | (3 marks) |  |
| h) | Briefly explain the triple point of benzene.                            | (4 marks) |  |
| i) | Explain useful observations made at cryogenic temperatures.             | (4 marks) |  |
| j) | Describe the third law of thermodynamics.                               | (2 marks) |  |

### **QUESTION TWO (20 MARKS)**

- a) A reversible engine converts one-sixth of the heat input into work. When the temperature of the sink is reduced by 62 °C, its efficiency is doubled. Find the temperature of the source and then sink. (10 marks)
- b) Consider a constant mass of gas with internal energy E. suppose it has a mass, m and is heated from T<sub>1</sub> to T<sub>2</sub> temperatures, show that its change in internal energy is given by

$$dE = \frac{R(T_2 - T_1)}{r - 1}$$

(10 marks)

### **QUESTION THREE (20 MARKS)**

- a) In an experiment 200 g of lead at 200 °C was mixed with 400 g of water at 20 °C. Determine the entropy of the system. (Cp for lead = 145 J/Kg-K). (13 marks)
- b) A piece of 300 g of brass was heated to 100°C and placed in 150g of a liquid at 10°C kept in a copper calorimeter of mass 500 g. If the final temperature of the mixture becomes 30 °C, find the specific heat of the liquid given that the specific heat of brass and copper are 370 J/Kg°C and 391 J/Kg°C respectively.

### **QUESTION FOUR (20 MARKS)**

a) Consider m grams of air enclosed in a cylinder whose walls are perfectly non-conducting and the bottom is perfectly conducting. The cycle also consists of a hot source, an insulating cap and a cold sink. Suppose the initial pressure, volume and temperature of the air is P<sub>1</sub>, V<sub>1</sub> and T<sub>1</sub>, show that the efficiency of a diesel engine cycle is given by:

SO 9001:2008 Certified

$$\eta = 1 - \left(\frac{1}{e}\right)^{\kappa-1} \frac{K^{\kappa} - 1}{\kappa(K-1)}$$

(20 marks)

#### **QUESTION FIVE (20 MARKS)**

- a) 32g of a gas at N.T.P. occupied 22.3 liters. Find the r.m.s. velocity of the molecules at 20<sup>o</sup>C.
   (7 marks)
- b) One liter of hydrogen at 0  $^{0}$ C and a pressure of 760 mmHg has a weight of 0.0896. Find the value of J given that Cp = 3.409 Cal/g/ $^{0}$ C and Cv = 2.411 Cal/g/ $^{0}$ C. (8 marks)
- c) A motor cycle engine develops 10kw and consumes petrol at the rate of 2.4 Kg/h. if the calorific value of the petrol is 40 MJ/Kg, calculate the efficiency of the engine and estimate the rate at which heat is rejected to the exhaust. Neglect all other losses.

(5 marks)

--END---

