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INSTRUCTIONS:

Answer gucstion ONE and ANY other two guestions
QUESTION ONE (30 MARKS)

a) Evaluate the following:

i) f: x(4—x*)3dx. (3 marks)

iiy [ e*sin2xdx. (4 marks)

i) [ x24% dx (3 marks)

: 2%

IV) fm dx. (5 markS)
b) Find the area bounded by the curves ¥ = x? and y = 2x. (4 marks)

¢) Evaluate the area of the surface generated by revolving the curve y = Jx between x= 0 and
x = 2 about the x-axis. (4 marks)
d) The velocity of a train after leaving a station is as follows:

Time (minutes) 0 2 4 6 8 0] 12 14 16
Speed 0 50 110 160 | 230 | 290 | 360 410 | 470
(metres/min.) .

Use Simpsons rule to find the distance travelled in the first 16 minutes. (3 marks)
e) Verify the mean value theorem of integral calculus for the function f(x)=x” +1 on the
interval [— 2,]]. (4 marks)
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QUESTION TWO (20 MARKS)
(a) Determine f(x) given that f (x) = 6x* — 2x — 1 and f(0) = 2, (3 marks)
(b) Find the volume of the solid of revolution of the area under the curve ¥ = x* + 1 from

x = 0 to x = 2 about the x-axis. (4 marks)
(¢) Determine the area bounded by the curves ¥ = 3, y + x = 0 and 2x — 3y = 20.
) (8 marks)
(d) Evaluate [ (x._.;::g}z dx. (5 marks)
QUESTION THREE (20 MARKS)
a) Evaluate [} f:” ydydx. (5 marks)
b) Evaluate [ sin®xcos®xdx (4 marks)

¢) Determine the length of the arc y = x> joining the origin O(1,1) to the point (4,8).
g p
(5 marks)

d) Approximate the integral of the function f: i—x using Simpson’s rule and obtain the
maximum error using 5 strips. (6 marks)

QUESTION FOUR (20 MARKS)

a) Use the trapezoidal rule with four strips to evaluate [ 12 2x3dx, (4 marks)

b) Evaluate ffR f(x,y)dA for f(x,¥) =1 —6x%y,R: 0 < x <2, -1 £ ¥ £ 1(5 marks)

c) Evaluate:

i) j x In xdx. (4 marks)
i) [ (4 marks)
iii) f% dx. (3 marks)

QUESTION FIVE (20 MARKS)
a) Find the volume of revolution bounded by the region y = \/x the line x = 1 and x = 4

about the line ¥ = 1. (5 marks)
b) Evaluate:
i. f\s;l___;, dx (5 marks)
jj, [y, G
c) Use Maclaurin’s theorem to expand f(x) =In(1 +x) in ascending powers of x up to the
term in x°, (5 marks)

--END--
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DEFINITIONS AND FORMULAE

Area and volume formulae

Yolume of a cone or pyramid = {Ah, where A = base areca, i = height of vertex.
Area of curved surface of a cone = #rl, where [ = slant height, r = base radius.
Volume of a sphere = §mrh,

Surface area of a sphere = 4772,

Area of a spherical zone
(between planes distance /i apart) = 2mrh.

Trigonometry
I I . =ind 1
0=—: f=—: =—: cotd .
Pt cost’ % sin @’ tap cos@ 7% @no
cos* O+sim* 6 = 1; 1+tan®f = sec*0; cot*@+1 = csc? b,

5in (0+¢) = sin fcos p+cossin ¢; cos (@+¢) = cos 0 cos ¢ Fsin O sin ¢;

_ tanfitan g
tan 0+ ¢) = [Ftan 0 tan ¢ [B+¢ & (k+T)m]
i i ; in* 0; o AME,
sin20 = 2sinfcos F; cos 20 = cos? 0—sin®f; tan 26 = =y [0 + (3k+Hnl
2cos*f = 1+cos20; 2sin*d = 1—cos 20,
1= 2t d8 2

i 2r
Il'r=!a,ni8,thensmﬁ=i+—f,, msﬂ—m, tan = T A

2 sin # cos ¢ = sin 0+ ¢)+sin (0—¢);
2cosfcos g = c;‘.‘s (@4 )+ cos (0—¢);
2 sin & 5in ¢ = cos (F—¢)—cos (@ +¢).
sin a-+sin f = 2 sin 3(e+#) cos Ha—F); sina—sin § = 2 cos a+4) sin He—A);

cos a@+cos f = 2 cos Ha+f) cos H(e—g); cosa—cos S = 2 sin e+ f)sin HE—a).

In the triangle ABC: “ ‘ /)

a® = b*+-¢®—2bccos A, elc.;

(s=5) (s=¢)

tan 34 = e

,ele.) area = J{s(s—a) (s—b) (s=)};

where 5 = Y(a+b+c).

Ranges of the inverse functions:

—ir ssinlx=4m; o=coslxsw; —dw<tantx < dm
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DEFINITIONS AND FORMULAE

Indefinite imegraly of commen functiony

(16 the Tollowing we take &= o and omit the additive-constant:]

ftx) [ rtxrde
x(n %+ =1) x" (1)
1/x Inx if ¥x>o0,In(-x) [ x<o
(i.e. In|x|, x ¥ 0)
1 1 X
— - tan~!
x+at a a
1 1, x=-a
S = L e
xt=a 20 jx+a;
1 =i X
NEETS! LS For logarithmic forms of
inverse hyperbolic
¥ . —x\ . i
-r—, cosh-'1= ifx>a, —cosh“(—) iflx<-a functions see p. 3.
Jx3—at) a a
e sint X
J(ﬂ,!_ x‘l.) a
5in x —cos X
cos x sin X
lan x In [see x|
cotx In |sin x|
sec x : In |sec x+tan x | = In [tan (3x+ )|
csC X In [tan 4x |
i b cos
" s5in bx — — (asin bx—=>bcos by
B a’+b‘( )
b 7 (acos bx+bsin bx)
e"% cos bx — ~— (a cos bx+ b sin by
at+ b}
sin® x d(x =4 sin 2x)
cos? x 4(x+4sin 2x)
sinh x cosh x
cosh x sinh x
Integration by parts ] y
Sl 1 r_ﬁ“ dv = - |2 v
oy oy
Reduction formulae far trigonometric integrals
in . m—1 i . \n m=1 i
f Sin™ xdx = —— sin™-? xdx; J. cos™ xdx = --— cos™txde;
0 m Jo 0 m Jo
L m—1 [in | =1 fi*
sin™ x cos" xdx = —— sin™"? x cos" xdx = —— sin™ x cos"* xdx. -
[} m+nJjo m=+njo

[These results hold provided that the exponents in the reduced form are greater than — I, There are
analogous reduction formulae with other inlervals of integration (Y&, m, 14,7} with &y, k, integral.]
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