UNIVERSITY OF EMBU

2017/2018 ACADEMIC YEAR

SECOND SEMESTER EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN STATISTICS

SMA 204: LINEAR ALGEBRA II.
DATE: APRIL 10, 2018
TIME: 8:30 AM - 10:30 AM
INSTRUCTIONS:
Answer Question ONE and ANY other two Questions

QUESTION ONE (30 MARKS)
a) Briefly define the following terms;
i) A bilinear form of a vector space V.
ii) A linear functional of a vector space V.
(2 marks)
b) Find the determinant of a 2×2 square matrix $A=\left(\begin{array}{cc}2 & -12 \\ 1 & -5\end{array}\right)$ by cofactor expansion along the first row.
c) Prove that if two $n \times n$ square matrices A and B are similar, then they have the same characteristic polynomial.
d) Find the minimal polynomial of a 2×2 square matrix $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ (4 marks)
e) Find the quadratic form $q(x)$ that corresponds to the 2×2 square symmetric matrix

$$
A=\left(\begin{array}{cc}
5 & -3 \tag{3marks}\\
-3 & 8
\end{array}\right)
$$

f) Show that if A is square matrix and λ is an eigenvalue of A, then $\mathrm{E}_{A}(\lambda)=\operatorname{Ker}(\lambda I-A)$.
(4 marks)
g) Show that if a matrix A is orthogonal, then $\operatorname{det}(A)= \pm 1$.
h) Let $T: \mathfrak{R}^{n} \rightarrow \mathfrak{\Re}$ be defined by $T x=\sum_{i=1}^{n} x_{i}$ where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Show that T is a linear functional on $V=\mathfrak{R}^{n}$.

QUESTION TWO (20 MARKS)

a) Given a 3×3 square matrix $\left(\begin{array}{ccc}3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5\end{array}\right)$. Find;
i) The characteristic polynomial of A.
ii) Eigenvalues of A.
iii) Eigenvectors of A.
b) Find the dual basis $\beta^{*}=\left\{\phi_{1}, \phi_{2}\right\}$ given the basis $\beta=\left\{\overline{v_{1}}=\binom{2}{1}, \overline{v_{2}}=\binom{3}{1}\right\}$ of \mathfrak{R}^{2}. (6 marks)
c) Verify that $Q=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & \sqrt{2} & 0 \\ -1 & 0 & 1\end{array}\right)$ is an orthogonal matrix.

QUESTION THREE (20 MARKS)

a) Find the determinant of a 5×5 square matrix $M=\left(\begin{array}{ccccc}2 & 3 & 4 & 7 & 8 \\ -1 & 5 & 3 & 2 & 1 \\ 0 & 0 & 2 & 1 & 5 \\ 0 & 0 & 3 & -1 & 4 \\ 0 & 0 & 5 & 2 & 6\end{array}\right)$ by use of an appropriate method.
b) Prove that a bilinear form f is alternating if and only if it is skew symmetric.
c) Given a 5×5 square block diagonal matrix $A=\left(\begin{array}{lllll}2 & 5 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 4 & 2 & 0 \\ 0 & 0 & 3 & 5 & 0 \\ 0 & 0 & 0 & 0 & 7\end{array}\right)$. Find;
i) The characteristic polynomial of A.
(4 marks)
ii) The minimal polynomial of A.

QUESTION FOUR (20 MARKS)

a) Let A and B be 3×3 square matrices given by $A=\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right)$ and $B\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)$.

Determine whether A and B are similar.
b) Let $P_{1}=(a+b t: a b \in \mathfrak{R}\}$ be the vector space of real polynomials of degree ≤ 1. Find the basis $\left\{\overline{v_{1}}, \overline{v_{2}}\right\}$ of V that is dual to the basis $\left\{\phi_{1}, \phi_{2}\right\}$ of V^{*} defined by $\phi_{1}(f(t))=\int_{0}^{1} f(t) d t$ and $\phi_{2}(f(t))=\int_{0}^{2} f(t) d t$. (4 marks)
c) Given a 2×2 square matrix $A=\left(\begin{array}{cc}5 & -6 \\ 3 & 4\end{array}\right)$,
i) Show that A is diagonizable.
ii) Compute A^{10} using results in $c(i)$.

QUESTION FIVE (20 MARKS)

a) Find the orthonormal basis set by use of the Gram Schmidt orthogonalization process given that $\overline{v_{1}}=\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right), \overline{v_{2}}=\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)$ and $v_{3}=\left(\begin{array}{c}3 \\ -7 \\ 1\end{array}\right)$ are basis of an inner product space $V .(6$ marks $)$
b) Show that the characteristic polynomial $\chi_{A}(t)$ and the minimal polynomial $m_{A}(t)$ of A have the same irreducible factors.
c) Find the polynomial matrix of a 3×3 square matrix $A=\left(\begin{array}{ccc}-1 & 3 & 2 \\ 1 & 0 & -2 \\ -3 & 1 & 1\end{array}\right)$ given that

$$
\begin{equation*}
P(x)=14+19 x-3 x^{2}-7 x^{3}+x^{4} . \tag{7marks}
\end{equation*}
$$

d) Express a function $f(\bar{u}, \bar{v})=3 x_{1} y_{1}-2 x_{1} y_{3}+5 x_{2} y_{1}+7 x_{2} y_{2}-8 x_{2} y_{3}+4 x_{2} y_{3}-6 x_{3} y_{3}$ in matrix notation, given that $\bar{u}=\left(x_{1}, x_{2}, x_{3}\right)$ and $\bar{v}=\left(y_{1}, y_{2}, y_{3}\right)$. (3 marks)
--END--

