

UNIVERSITY OF EMBU

2017/2018 ACADEMIC YEAR

SECOND SEMESTER EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE DEGREE OF BACHELORS OF SCIENCE, BACHELOR OF EDUCATION (SCIENCE) AND BACHELOR OF SCIENCE (STATISTICS)

SMA 206: INTRODUCTION TO REAL ANALYSIS

DATE: APRIL 12, 2018 INSTRUCTIONS:

Answer Question ONE and ANY other two Questions

QUESTION ONE (30 MARKS)

- a) Define an even integer number m. Hence prove that if m² is even then m is also even for any integer number m. (4 marks)
- b)
- i) Prove that if $x, y \in \mathbb{R}$ such that x < y then there is $r \in \mathbb{R}$ such that x < r < y

(2 marks)

TIME: 8:30 AM - 10:3-0 AM

- ii) Prove that for any positive real number x, there exist always a non-negative real number x^{-1} . (3 marks)
- c) Define a countable set. Hence illustrate that the set of rational numbers between [0, 1] is countable.
 (3 marks)
- d) Define a Cauchy sequence (x_n) in R. Hence prove that if a sequence (x_n) is convergent then it is Cauchy (4 marks)

Knowledge Transforms

ň

e) Determine the accumulation points of each of the set of real numbers

	i) The set	of natural numbers N;					
	ii) (a,b]						
	iii) The set	of irrational points	(3 marks)				
f)	Let S be a non-empty subset of R. Prove that the real number A is the sup A iff both the						
	following conditions are satisfied						
	i) $x \leq A$	$\forall x \subset S$					
	ii) $\forall \varepsilon > 0$	$\exists x' \in S : A - \varepsilon < x' \le A$	(3 marks)				
g)	Discuss the following concepts as used in analysis						
	i) A partic	on of a closed interval [a, b]	(1 mark)				
	ii) The Riemanns' upper sum and lower sum of the function f defined on the						
	interval	[a, b]	(3 marks)				
h)	State the conditions to be satisfied for a function to be continuous at a point $x = c$. Hence						
	determine whether the function						
	(x	$0 \le x \le 1$					

$$f(x) = \begin{cases} x & 0 \le x < 1\\ \frac{1}{2}x & 1 \le x < 2 \end{cases} \text{ is continuous at } x = 1. \tag{4 marks}$$

QUESTION TWO (20 MARKS)

a) Given that $x, y \in \mathbb{R}$, show that

i)	If	x is positive then	-x is negative and	conversely	(4 marks)
----	----	--------------------	--------------------	------------	-----------

ii)
$$x < y \implies \frac{1}{y} < \frac{1}{x}$$
 (3 marks)

iii)
$$x < y$$
 iff $x^2 < y^2$ (4 marks)

b)

i. Given that $A \subseteq \mathbb{R}$, show that A is open iff $A = A^0$ (4 marks)

ii. Let \overline{A} denote the closure of a subset $A \subset \mathbb{R}$. Prove that $A = \overline{A}$ if and only if A is closed. (5 marks)

QUESTION THREE (20 MARKS)

a)	Prove	that if	the lir	nit of a	functior	f(x)	exists,	then	that limit is	unique	(5 marks)

b) Prove that the set of real numbers \mathbb{R} is not countable (5 marks)

c) Using the first principle definition of the limit of a function, prove that

i)
$$\lim_{n \to \infty} \left(\frac{2n}{2n+2} \right) = 1$$
 (4 marks)

ii) $\lim_{x \to 3} (x^3 + 2x) = 33$ (6 marks)

QUESTION FOUR (20 MARKS)

- a) Prove that every convergent sequence is bounded. Using an appropriate counter example show that the converse of this is not necessarily true (8 marks)
 b) Using the sequence X_n = (1 + ¹/_n)ⁿ): n ∈ N, prove that this sequence is convergent without necessarily determining its limit of convergence. (6 marks)
- c) Find the limit superior and limit inferior of the sequence

$$X_n = \cos \frac{n\pi}{2} + \frac{1}{n} \left(\sin \frac{2n+1}{2} \right) \pi; n \in \mathbb{N}$$
 (6 marks)

QUESTION FIVE (20 MARKS)

- a) Using the function f(x) = |x 4| at the point x = 4, show that the property of continuity does not necessarily imply differentiability. (7 marks)
- b)

1

Ą

- i. State the fundamental theorem of definite integral calculus. (2 marks)
- ii. By partitioning method, show that the Riemann Integral of the function f(x) = x on the interval $0 \le x \le 1$ is $\frac{1}{2}$ (11 marks)

--END--

