UNIVERSITY OF EMBU

2017/2018 ACADEMIC YEAR

SECOND SEMESTER EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF ECONOMICS

SMA 232: INTRODUCTION TO NUMERICAL METHODS.

DATE: APRIL 5, 2018
TIME: 11:00 AM - 1:00 PM

INSTRUCTIONS:

Answer Question ONE and ANY other two Questions

QUESTION ONE (30 MARKS)

a) Briefly define the following terms.
i) Inherent error.
ii) Round off error.
b) Approximate the relative error in $z=x-y$ when stored in 4-digit mantissa, given that;

$$
x=0.1234 \times 10^{4} \text { and } y=0.1232 \times 10^{4}
$$

c) Use the Newton Raphson formula to obtain an estimate of a root of the function $f(x)=x+2+\ln x$.
d) Use the trapezoidal rule with $n=4$ to estimate $\int_{1}^{2} x^{2} d x$.
e) Use Gaussian elimination to solve the following system of linear equations

$$
\left\{\begin{array}{c}
y+3 z=9 \\
2 x+2 y-z=8 \\
-x+5 z=8
\end{array}\right.
$$

f) Solve $y^{\prime}=y-x^{2}, y(0)=1$ by Picard's method up to the third approximation. Hence, find the value of $y(0.1)$. (4 marks)
g) Use Newton's forward interpolation formula to find a cubic polynomial in x which takes values $-3,3,11,27,57$ and 107 when $x=0,1,2,3,4$ and 5 respectively. (4 marks)
h) Use backward differences formula to find $f^{\prime}(2.2)$ from the following tabular data. (4 marks)

x	1.4	1.6	1.8	2.0	2.2
y	4.0552	4.9530	6.0496	7.3981	9.0250

QUESTION TWO (20 MARKS)

a) Solve the following system of linear equations by LU decomposition $\left\{\begin{array}{l}2 x+3 y+z=9 \\ x+2 y+3 z=6 \\ 3 x+y+3 z=8\end{array}\right.$
b) Use Gauss' forward difference formula to find the value of $e^{1.17}$ from the following tabular data.

x	1.00	1.05	1.10	1.15	1.20	1.25	1.30
y	2.7183	2.8577	3.0042	3.1582	3.3201	3.4903	3.6693

c) Use Euler method to solve the equation $y^{\prime}=2 x y+1$ with $y(0)=0, h=0.02$ for $x=0.1$
(5 marks)

QUESTION THREE (20 MARKS)

a) Evaluate $\int_{0}^{6} \frac{1}{3+x^{2}} d x$ using Simpson's three eight rule.
b) Find a real root of the equation $x=e^{-x}$ using the Newton - Raphson method.
(5 marks)
c) Using modified Euler's method, determine the value of y when $x=0.1$ given that

$$
\begin{equation*}
y^{\prime}=x^{2}+y ; y(0)=1 .(\text { Take } h=0.05) \tag{8marks}
\end{equation*}
$$

QUESTION FOUR (20 MARKS)

a) Show that any value of a function f can be expressed in terms of f_{n} and its backward differences.
b) Find a real root of the equation $x-e^{-x}=0$ using secant method.
c) Use second order Runge Kutta method with $h=0.1$ to find $y=(0.2)$ given $\frac{d y}{d x}=x^{2}+y^{2}$ with $y(0)=0$.

QUESTION FIVE (20 MARKS)

a) Use Taylor's series method to find $y(0.1), y(0.2), z(0.1), z(0.2)$, given that $\frac{d y}{d x}=x+z, \frac{d z}{d x}=x-y^{2}, y(0)=2, z(0)=1$ and assuming a height of 0.1 .
b) Use Gauss Siedel iteration to solve the following system of equations in three steps from $1,1,1$.

$$
\left\{\begin{array}{l}
10 x+y+z=6 \\
x+10 y+z=6 \\
x+y+10 z=6
\end{array}\right.
$$

c) From the following table of values x and y, obtain $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ for $x=1.2$:

x	1.0	1.2	1.4	1.6	1.8	2.0	2.2
y	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

(4 marks)
--END--

