UNIVERSITY OF EMBU

2017/2018 ACADEMIC YEAR

SECOND SEMESTER EXAMINATIONS

THIRD YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE, BACHELOR OF EDUCATION (SCIENCE) AND BACHELOR OF EDUCATION (ARTS)

SMA 320: METHODS 1
DATE: APRIL 11, 2018
TIME: 11:00 AM - 1:00 PM
INSTRUCTIONS:
Answer Question ONE and ANY Other TWO Questions.

QUESTION ONE (30 MARKS)

a) Define the following special functions:
i) Laplace transform
ii) Gamma functions
iii) Beta functions
b) If $J_{n}(x)$ is Bessel's function of first kind of order n, prove that

$$
J_{-n}(x)=(-1)^{n} J_{n}(x), \quad \text { for } n=1,2,3, \ldots \ldots .
$$

c) Let $\Gamma(x)$ denote the Gamma function. Prove that

$$
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}
$$

d) Find the Fourier sine series for $f(x)=x$ on $-L \leq x \leq L$
e) If $B(x, y)$ denotes Beta function in two variables x and y , prove that

$$
B(x+1, y)=\frac{x}{x+y} B(x, y)
$$

f) Show that the Laplace transform of $f(t)=t \sinh (t)$ is

$$
\frac{2 s}{\left(s^{2}-1\right)^{2}}
$$

QUESTION TWO (20 MARKS)

a) Prove the given formula well known as Bonnet's recurrence formula for Legendre polynomial.

$$
\begin{equation*}
(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x) \tag{8marks}
\end{equation*}
$$

b) Use the Laplace differentiation theorem to evaluate the Laplace transformation of
(6 marks)

$$
L\left\{t^{2} \sin k t\right\}
$$

c) Given that, $J_{n}(x)$ is Bessel's function of first kind of order n, prove that

$$
\frac{d}{d x}\left\{x^{n} J_{n}(x)\right\}=x^{\prime \prime} J_{n-1}(x) \quad \text { for } n=1,2,3, \ldots \ldots \quad \quad \text { (6 marks) }
$$

QUESTION THREE (20 MARKS)

a) If $\Gamma(x)$ and $B(x, y)$ denotes Gamma and Beta functions respectively, show that the two functions have the following relation

$$
\begin{equation*}
B(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)} \tag{8marks}
\end{equation*}
$$

b) Evaluate the given integral function

$$
\begin{equation*}
\int_{0}^{\pi / 2} \sin ^{8} \theta d \theta \tag{7marks}
\end{equation*}
$$

c) Solve the partial differential equation using the method of separation of variables

$$
\begin{equation*}
\frac{\partial^{2} z}{\partial x \partial y}=x^{2} y \tag{5marks}
\end{equation*}
$$

QUESTION FOUR (20 MARKS)

a) Find the Fourier cosine series for $f(x)=x^{2}$ on $-L \leq x \leq L$
b) Use the convolution theorem to find the solution to the initial value differential equation

$$
\begin{equation*}
x^{\prime \prime}+x=\cos t, \quad x(0)=0, \quad x^{\prime}(0)=0 \tag{8marks}
\end{equation*}
$$

c) Determine a power series solution for the differential equation

$$
y^{\prime \prime}+y=0
$$

QUESTION FIVE (20 MARKS)

a) Show that any two different Legendre polynomials are orthogonal in the interval $-1<x<1$
b) Solve the following initial value problem using Laplace transform.

$$
y^{\prime \prime}-6 y^{\prime}+10 y=e^{-t}, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

