

UNIVERSITY OF EMBU

2017/2018 ACADEMIC YEAR

SECOND SEMESTER EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE DEGREE OF MASTER OF SCIENCE IN APPLIED MATHEMATICS

SMA 536: APPLIED FUNCTIONAL ANALYSIS

DATE: APRIL 6, 2018 INSTRUCTIONS:

Answer Question ONE and ANY other two Questions. Exam Duration is 3 Hours. QUESTION ONE (30 MARKS)

a)	Suppose f and g are functions in a space $X = \{f: [0,1] \rightarrow \mathbb{R}\}$.		
	Does $d(f,g) = \max f - g $ define a metric?	(3 marks)	
b)	Find all possible topologies on $X = \{a, b\}$.	(2 marks)	
c)	Let X be an inner product space. Simplify $ x + y ^2 + x - y ^2$ for all $x, y \in X$.		
		(4 marks)	
d)	Let X be the closed unit interval [0,1]. Then $[0, 1/10)$; $(\frac{1}{3}, 1)$; and $(\frac{1}{n+2})$	$\left(\frac{1}{n}\right)$, where $n \in \mathbb{Z}$	
	and $n \ge 2$, is an infinite open cover of [0,1]. With clear illustration, find the least finite		
	subcover of X.	(4 marks)	
e)	Show that if X is a normed linear space, then the norm $\ \cdot\ $ defined of	that if X is a normed linear space, then the norm $\ \cdot\ $ defined on X is uniformly	
	continuous.	(3 marks)	
f)	Consider $A = \begin{pmatrix} i & 2 \\ 3 & 4 \end{pmatrix}$ and $T: \mathbb{C}^2 \to \mathbb{C}^2$ be defined as $\begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} i & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$). Find the adjoint	
	operator of T.	(5 marks)	

g) Let T: H → H be a bounded linear operator on a Hilbert space H. Show that
i) If T is self-adjoint, (Tx, x) is real for all x ∈ H. (2 marks)

Knowledge Transforms

TIME: 2:00 PM - 5:00 PM

ii) If H is complex and (Tx, x) is real for all $x \in H$, the operator T is self-adjoint.

(3 marks)

(4 marks)

h) If each of sets A and B is a subset of a linear topological space X, then

Int(A + B) = Int(A) + Int(B).

Justify this statement. Note: Int() denotes interior of the set under brackets. (4 marks)

QUESTION TWO (20 MARKS)

- a) Given f: X → Y and g: Y → Z to be homeomorphisms, is the composition g ∘ f: X → Z a homeomorphism? explain.
 (4 marks)
- b) A linear topological space is regular. Justify this statement. (6 marks)
- c) Show that a normed linear space X together with the topology induced by the norm metric, is a linear topological space.
 (6 marks)
- d) Consider two topological spaces X = (-1,1) and Y = ℝ. Define a continuous map f: (-1,1) → ℝ by

$$f(x) = \tan\left(\frac{\pi x}{2}\right).$$

Is f a homeomorphism? Explain.

QUESTION THREE (20 MARKS)

a) Suppose that F is a closed and convex subset of a Hilbert space H. Show that if x ∈ H, then there is a unique element P(x) in F satisfying (8 marks)
 ||x - P(x)|| = inf{||x - z||: z ∈ F}.

The mapping P is called the projection of \mathcal{H} on F.

- b) Prove that a bounded linear P: H → H on a Hilbert space H is a projection if and only if P is self-adjoint and idempotent (that is P² = P).
 (8 marks)
- c) For all x and y in a normal linear space X, $||x|| ||y||| \le ||x y||$. (4 marks)

QUESTION FOUR (20 MARKS)

a) Define a mapping $R: C[0,1] \to C$,

$$Rf = \int_0^1 x f(x) \mathrm{d}x.$$

ISO 9001:2008 Certified

i) Show that R is a linear operator.

ii) Consider C[0,1] with the norm,

 $||f||_1 = \int_0^1 |f(t)| \, \mathrm{d}t.$

Show that R is bounded. (3 marks) iii) Show that ||R|| = 1. (4 marks)

b) Let X denote a compact Hausdorff space and let C(X, R) denote the set of all continuous functions f: X → R. Suppose that A is a closed lattice in C(X, R), and f ∈ C(X, R), then show that if for every x, y ∈ X, there exists g_{xy} ∈ A such that g_{xy}(x) = f(x) and g_{xy}(y) = f(y); then f ∈ A.

QUESTION FIVE (20 MARKS)

R

- a) Show that the spectrum σ(T) of a bounded self-adjoint linear operator T: H → H on a complex Hilbert space H is real.
 (8 marks)
- b) Let T: H → H be a bounded self-adjoint linear operator on a complex Hilbert space H.
 Show that
 - i) All eigenvalues of T (if they exist), are real. (4 marks)
 - ii) Eigenvectors corresponding to different eigenvalues of T are orthogonal.(3 marks)
- c) Let X denote a metric space. For x, y ∈ X, let d(x, y) denote the distance between x and y. Given d(x, y) = 0 if x = y and d(x, y) = 1 otherwise, does d(x, y) define a metric?
 (5 marks)

--END--

Knowledge Transforms

(4 marks)

