UNIVERSITY OF EMBU

2017/2018 ACADEMIC YEAR

SECOND SEMESTER EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE DEGREE OF MASTER OF SCIENCE IN APPLIED MATHEMATICS

SMA 538: APPLIED DYNAMICAL SYSTEMS I
DATE: APRIL 10, 2018
TIME: 2:00 PM - 5:00 PM

INSTRUCTIONS:

Answer Question ONE and ANY other two Questions. Exam Duration is 3 Hours.

QUESTION ONE (30 MARKS)

a) Consider the following vector field:

$$
\begin{aligned}
& \dot{x}=y \\
& \dot{y}=-x+\varepsilon x^{2} y
\end{aligned}
$$

Given that $(x, y)=(0,0)$ is a non-hyperbolic fixed point of the system, determine if this fixed point is stable.
b) Consider the vector field:

$$
\begin{aligned}
\dot{x} & =y, \\
\dot{y} & =x-x^{3}-\delta y, \quad \delta \geq 0 .
\end{aligned}
$$

Find the range of δ for the above system to have no closed orbits.
c) Use center manifold theorem to determine the qualitative behavior of the origin for the following system.

$$
\begin{aligned}
\dot{x} & =x y \\
\dot{y} & =-y-x^{2}
\end{aligned}
$$

d) Show that the vector field;

$$
\dot{x}=J x+\mathcal{F}(x, \mu), \quad x \in \mathbb{R}^{n}, \quad \mu \in \mathbb{R}^{n}
$$

can be transformed to a normal form in which $\mathcal{F}(x, \mu)$ satisfies

$$
e^{-J^{\prime} t} \mathcal{F}\left(e^{J^{*} t} x, \mu\right)=\mathcal{F}(x, \mu)
$$

and

$$
\mathcal{F}(0, \mu) \in \operatorname{Ker} J^{*},
$$

$$
J^{*} D_{x} \mathcal{F}(0 ; \mu)-D_{x} \mathcal{F}(0 ; \mu) J^{*}=0 .
$$

e) Suppose all the eigenvalues of the Jacobian $D f(\bar{x})$ have negative real parts. Use Lyapunov theory to show that the equilibrium solution $x=\bar{x}$ of the nonlinear vector field;
$\dot{x}=f(x), x \in \mathbb{R}^{n}$; is asymptotically stable.
f) If on a simply connected region $D \subset \mathbb{R}^{2}$, the expression $\frac{\partial f}{\partial x}+\frac{\partial g}{\partial y}$ is not identically zero, and does not change sign. Show that

$$
\begin{aligned}
\dot{x} & =f(x, y) \\
\dot{y} & =g(x, y),
\end{aligned}
$$

Has no closed orbits lying entirely in D.

QUESTION TWO (20 MARKS)

Compute the normal form for a vector field on \mathbb{R}^{2} in the neighborhood of a fixed point where the linear part is given by $J=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$.

QUESTION THREE (20 MARKS)

a) Use the center manifold theorem to determine the qualitative behavior of the origin, for the system;

$$
\begin{align*}
\dot{x}_{1} & =-x_{2}+x_{1} y \tag{8marks}\\
\dot{x}_{2} & =x_{1}+x_{2} y \\
\dot{y} & =-y-x_{1}^{2}-x_{2}^{2}+y^{2} .
\end{align*}
$$

b) Consider the map:

$$
\binom{x}{y} \rightarrow\left(\begin{array}{cc}
0 & 1 \\
-\frac{1}{2} & \frac{3}{2}
\end{array}\right)\binom{x}{y}+\binom{0}{-y^{3}} .
$$

The origin is a fixed point of the map.
i) Compute eigenvalues of the map linearized about the origin. (4 marks)
ii) Compute the center manifold.

QUESTION FOUR (20 MARKS)

Consider the following vector field;

$$
\dot{x}=f(x), \quad x \in \mathbb{R}^{n} .
$$

Let \bar{x} be a fixed point of the above vector field, and let $V: U \rightarrow \mathbb{R}$ be a C^{1} function defined on some neighborhood U of \bar{x} such that
i) $\quad V(\bar{x})=0$ and $V(x)>0$ if $x \neq \bar{x}$.
ii) $\quad \dot{V}(x) \leq 0$ in $U-\{\bar{x}\}$.

Discuss the stability of \bar{x}.

QUESTION FIVE (20 MARKS)

a) Consider the following vector field with time periodic coefficients;

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=A(t)\binom{x_{1}}{x_{2}},
$$

Where

$$
A(t)=\left(\begin{array}{cc}
-1+\frac{3}{2} \cos ^{2}(t) & 1-\frac{3}{2} \cos (t) \sin (t) \\
-1-\frac{3}{2} \cos (t) \sin (t) & -1+\frac{3}{2} \sin ^{2}(t)
\end{array}\right) .
$$

i) Find the eigenvalues of $A(t)$.
ii) Find the solution(s) of the equation.
iii) Comment on the stability of the solution(s).
b) Suppose f is a differential vector field with 0 as a hyperbolic fixed point. Denote $\Phi(t, x)$ the corresponding flow and $A=d f_{0}$ the Jacobian matrix of f at 0 . Show that there is a homeomorphism $\varphi(x)=x+h(x)$ with h bounded such that

$$
\varphi \circ e^{t A}=\Phi_{t} \circ \varphi
$$

in a sufficiently small neighborhood of 0 .

