UNIVERSITY OF EMBU
2017/2018 ACADEMIC YEAR

SECOND SEMESTER EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE DEGREE OF MASTER OF SCIENCE IN APPLIED MATHEMATICS

SMA 539: NUMERICAL ANALYSIS

DATE: APRIL 11, 2018
TIME: 2:00 PM - 5:00 PM

INSTRUCTIONS:

Answer Question ONE and ANY other two Questions. Exam Duration is 3 Hours.

QUESTION ONE (30 MARKS)

a) Consider the function $f(x)=\frac{10}{1-x^{2}}$ for all $x \in \mathbb{R}$.
i) Find the condition number of f. (3 marks)
ii) Is the function ill or well-conditioned? (2 marks)
b) Consider the vector $x=(1,0,-1,2)$. Find
i) $\|x\|_{1}$.
ii) $\|x\|_{2}$.
iii) $\|x\|_{\infty}$.
c) Compute the Frobenius norm of $A=\left[\begin{array}{cc}5 & 9 \\ -2 & 1\end{array}\right]$.
d) Find the eigenvalues of $A(t)=\left(\begin{array}{cc}-1+\frac{3}{2} \cos ^{2}(t) & 1-\frac{3}{2} \cos (t) \sin (t) \\ -1-\frac{3}{2} \cos (t) \sin (t) & -1+\frac{3}{2} \sin ^{2}(t)\end{array}\right)$.
e) Consider evaluating a function $f(x)$ at the approximate value x_{A} rather than at x. How well does $f\left(x_{A}\right)$ approximate $f(x)$?
f) Use Gaussian elimination to solve the following system of linear equations.

$$
\begin{aligned}
4 x_{1}-2 x_{2}+x_{3} & =15 \\
-3 x_{1}-x_{2}+4 x_{3} & =8 \\
x_{1}-x_{2}+3 x_{3} & =13
\end{aligned}
$$

g) Describe what is meant by instability or ill-conditioning of systems.

OUESTION TWO (20 MARKS)

Let $x_{T}=x_{A}+\varepsilon$ and $y_{T}=y_{A}+\eta$ be some positive numbers where $\left(x_{T}, y_{T}\right)$ denote true values of $(x, y) ;\left(x_{A}, y_{A}\right)$ denote approximate values of (x, y); and (ε, η) denotes the deviations of $\left(x_{T}, y_{T}\right)$ and $\left(x_{A}, y_{A}\right)$. Find the relative error, E_{r}, with respect to the following;
a) $x_{A}+y_{A}$.
b) $x_{A}-y_{A}$.
c) $x_{A} \times y_{A}$ (Give your answer in terms of $E_{r}\left(x_{A}\right)$ and/or $E_{r}\left(y_{A}\right)$).
d) x_{A} / y_{A} (Give your answer in terms of $E_{r}\left(x_{A}\right)$ and/or $E_{r}\left(y_{A}\right)$).
e) Comment on the results obtained in (a)-(d) above.

In the above, $E_{r}()$ denotes the relative error with respect to the identity under brackets.

QUESTION THREE (20 MARKS)

a) Let x_{A} and y_{A} denote approximate values of x and y, respectively, and let x_{T} and y_{T} denote true values of x and y, respectively. Determine how the relative error propagates with division.
b) Consider the following system of equations:

$$
\begin{aligned}
x_{1}+\frac{1}{2} x_{2}+\frac{1}{3} x_{3} & =-0.03 \\
\frac{1}{2} x_{1}+\frac{1}{3} x_{2}+\frac{1}{4} x_{3} & =0.12 \\
\frac{1}{3} x_{1}+\frac{1}{4} x_{2}+\frac{1}{5} x_{3} & =-0.10
\end{aligned}
$$

i) Represent the system in the form, $A \vec{x}=\vec{b}$, where A is a 3×3 matrix, $\vec{x}=$ $\left[x_{1}, x_{2}, x_{3}\right]^{T}$, and \vec{b} is a 3×1 vector of constants. (2 marks)
ii) Use Gaussian elimination method to find the inverse of the matrix A formed in (a) above.
iii) Use the results in (a)-(b) above to find the solution of the system.

QUESTION FOUR (20 MARKS)

Taking $x_{i}=0, i=1,2,3$; as the initial approximation, solve the following system of equations:

$$
\begin{aligned}
4 x_{1}+x_{2}+x_{3} & =2, \\
x_{1}+5 x_{2}+2 x_{3} & =-6, \\
x_{1}+2 x_{2}+3 x_{3} & =-4 .
\end{aligned}
$$

a) Using Jacobi iteration method.
b) Using Gauss-Seidel iteration method.

Restriction: Perform five iterations in each case.

QUESTION FIVE (20 MARKS)

Develop the connection between rational functions and continued fractions in the case,

$$
y(x)=\frac{a_{0}+a_{1} x+a_{2} x^{2}}{b_{0}+b_{1} x+b_{2} x^{2}}
$$

