

UNIVERSITY OF EMBU

2017/2018 ACADEMIC YEAR

SECOND SEMESTER EXAMINATIONS

FOURTH YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION (SCIENCE)

SCH 404: ORGANOMETALLIC CHEMISTRY

DATE: APRIL 12, 2018

TIME: 2:00-4:00PM

INSTRUCTIONS:

Answer question ONE and any other TWO questions

QUESTION ONE (30 MARKS)

a)	Define	the	fol	lowing	terms:
4)	Denne	une	101	lowing	terms.

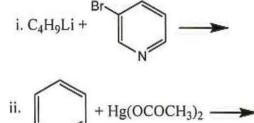
- i) Organometallic compound.
- ii) Hapticity
- iii) Transmetalation
- b) What are the three broad classes of organometallic compounds? Give an example of each.
- c) Organometallic reagents are useful synthetically because they react as if they were free carbanions. Explain.
 (6 marks) (6 marks)
- d) Using an equation, briefly explain how Grignard reagents prepared? (3 marks)
- e) Determine the formal oxidation number and electron count of the metal atom in: (6 marks)
 i) [Fe(η⁵-C₅H₅)₂]
 - ii) $[Cr(\eta^5 C_5H_5)(\eta^6 C_6H_6)]$
 - iii) [Mn(CO)₅]⁻.
- f) List three factors that influence the degree of association of organolithium compounds.

g) Give the formal names for the following compounds:

- i) Ferrocene, [Fe(η^5 -C₅H₅)₂]
- ii) [RhMe(PMe₃)₄]

Knowledge Transforms

ISO 9001:2008 Certified


(3 marks) (3 marks)

(6 marks)

iii) [Mo(η⁶-C₆H₆)(CO)₃]

QUESTION TWO (20 MARKS)

- a) Which of the two isoelectronic compounds Cr(CO)6 and [V(CO)6]- will have the higher CO stretching frequency? Explain.
 (3 marks)
 - b) Describe any two important general methods of preparing organometallic compounds.
- c) Draw the products of the following organometallic reactions.

d) Write equations for a two-step preparation of $(\eta^5-C_5H_5)_2N_1$ from C_5H_6 , Na and NiCl₂.

- e) Predict the products from the hydroboration of: (4 marks) (2 marks) (2 marks)
 - i. $CH \equiv CH + BH_3 \longrightarrow$
- f) Explain the difference between a Fischer-type carbine and a Schrock-type carbine.

(3 marks)

(4 marks) (4 marks)

QUESTION THREE (20 MARKS)

- a) Write a balanced equation showing the overall net reaction in the hydroformylation process.
- (2 marks)
 The hydroformylation of pent-2-ene using Co₂(CO)₈ as the catalyst was found to give rise to three aldehydes in the ratio 35:12:5. Suggest which of the three products was formed the most and which in the least amount.
- c) Draw out a catalytic cycle for the conversion of pent-1-ene to hexanal using HRh(CO)₄ as the catalyst precursor.
 (14 marks)

QUESTION FOUR (20 MARKS)

- a)
- i) Explain what is meant by 'oxidative addition' and discuss the conditions that must be met for such a reaction to occur. What is the reverse of this reaction called?

(6 marks)

- ii) Write an equation for the oxidative addition of H_2 to $Os(CO)_5$. (2 marks)
- b) How can one account for the low activation energy for oxidative addition of H₂ with its very strong H-H bond? (3 marks)
- c) $Fe_2(\eta^5-C_5H_5)_2(CO)_4$ exhibits CO stretches in both the 2000 cm⁻¹ and 1800 cm⁻¹ regions.

- i) Based on your understanding of carbonyl complexes and the information above, draw the structure for the diamagnetic species. (3 marks)
- ii) Why does this complex display CO-stretches in two distinct regions? (2 marks)
- iii) Place the following phosphines in order of highest to lowest V_{CO} for Ir(CO)₂ClL.

L= PPh₃, PPh₂Me, PMe₃, PF₃, PPh₂OMe

QUESTION FIVE (20 MARKS)

- a) Consider each pair of carbonyl complexes. In each case decide which one would have the lower infrared CO stretching frequency. Explain your choice. (6 marks)
 - i) [Fe(CO)5] and [Fe(CO)4Cl]
 - ii) [Mo(CO)₆] and [Mo(CO)₄(PPh₃)₂]
 - iii) [Mo(CO)₄(PPh₃)₂] and [Mo(CO)₄(PMe₃)₂]
- b) V(CO)₆ is not stable by the EAN rule (demonstrate this) while the predicted stable structure is V₂(CO)₁₂ (demonstrate this, too). Experimentally, the observed compound is V(CO)₆. Propose an explanation why the divanadium compound is not observed. (6 marks)
- c) Explain the difference between homogeneous and heterogeneous catalysts and discuss the advantages and disadvantages of both.
 (8 marks)

0							P	ERIOD	C TAB	LE							
1 H 1.008	2											13	14	15	16	17	18 2 He 4.003
3 Li 6.941	4 Be 9.012											5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.31	3	4	5	6	7	8	9	10	11	12	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 Cl 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc 98.91	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 I 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	57* La 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.8	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89** Ac (227)	104 Db (261)	105 JI (262)	106 Rf (263)	107 Bh (262)	108 Hn (?)	109 Mt (?)						•			* 800.00

•	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Lanthanides	Će	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.1	140.9	144.2	(147)	150.4	152.0	157.2	158.9	162.5	164.9	167.3	168.9	173.0	175.0
**	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Actinides	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	(232)	(231)	(238)	(237)	(239)	(243)	(247)	(247)	(252)	(252)	(257)	(256)	(259)	(260)

--END--

(4 marks)