

UNIVERSITY OF EMBU

2017/2018 ACADEMIC YEAR
SECOND SEMESTER EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION, BACHELOR OF SCIENCE, BACHELOR OF SCIENCE IN ANALYTICAL CHEMISTRYAND BACHELOR OF SCIENCE IN INDUSTRIAL CHEMISTRY

SCH 204: INTRODUCTION TO REACTION KINETICS AND ELECTROCHEMISTRY

DATE: APRIL 9, 2018
TIME: 8:30-10:30AM
INSTRUCTIONS:
Answer Question ONE and any other TWO Questions
The following constants may be useful: $\mathrm{R}=8.314 \mathrm{~J} / \mathrm{K} / \mathrm{Mol}, \mathrm{F}=96485 \mathrm{c} / \mathrm{Mol}$ and $\mathrm{T}=\mathbf{2 9 8 . 1 5 \mathrm { K }}$

QUESTION ONE (30 MARKS)

a) Explain the following terms used in chemical kinetics.
i) Order of reaction
ii) Rate of reaction
iii) Molecularity
iv) Elementary reaction
b) Explain the concept of half life used in chemical kinetics
c) Account for the effect of temperature on the rate of a chemical reaction
d) The reaction $\dot{\mathrm{C}} \mathrm{l}_{(\mathrm{g})}+\dot{\mathrm{C}} \mathrm{l}_{(\mathrm{g})} \rightarrow \mathrm{Cl}_{2(\mathrm{~g})}$ follows second order kinetics with
a rate constant of $7.0 \times 10^{9} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ if the initial concentration of $\dot{\mathrm{C}}(\mathrm{g})$ is
0.086 M determine the half life of the reaction.

Consider the equation $\mathrm{A}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \rightarrow \mathrm{C}_{\mathrm{g})}$
e) Briefly explain how the order of the reaction with respect to the reactants can be obtained
f) Differentiate between conductance and conductivity
g) Briefly explain what is meant by limiting molar conductivity
h) Distinguish between ionic mobility and ionic velocity
i) Using specific examples, sketch a graph that would be obtained in conductometric titration of a strong acid with a strong base. Explain the shape of the graph
j) Explain the terms used in Arrhenius equation

QUESTION TWO (20 MARKS)

a) The rate law for a first order reaction is given by Rate $=k[A]$.
i) Derive the integrated rate law for this reaction.
ii) Show that the $t_{\frac{1}{2}}=\frac{0.693}{\mathrm{k}}$
b) Using specific examples explain the factors that affect molar conductance

QUESTION THREE (20 MARKS)

a) The first order rate constant for the decomposition of a certain insecticide in water at $12^{\circ} \mathrm{C}$ is $45 \mathrm{yr}^{-1}$. A quantity of this insecticide is washed into the lake in June, leading to a concentration of $5.0 \times 10^{-7} \mathrm{~g} / \mathrm{cm}^{3}$ of water. Assume that the effective temperature of the lake is $12^{\circ} \mathrm{C}$.
i) What is the concentration of the insecticide in june the following year? (5 marks)
ii) How long will it take for the concentration of the insecticide to drop to

$$
3.0 \times 10^{-7} \mathrm{~g} / \mathrm{cm}^{3}
$$

b) At $25^{\circ} \mathrm{C}$, the standard Emf of the cell $\mathrm{Zn}_{(\mathrm{s})}\left|\mathrm{ZnSO}_{(\mathrm{aq})} \| \mathrm{PbSO}_{(\mathrm{aq})}\right| \mathrm{Pb}_{(\mathrm{s})}$
is 0.4085 V . When the cell contains 0.005 M ZnSO 4 , its Emf is 0.6114 V
i) Write down the electrode reactions and the cell reaction
ii) Write the Nernst equation for the cell
iii) Calculate the activity of the ZnSO_{4}

QUESTION FOUR (20 MARKS)

a) The following data was obtained for the gas phase decomposition of NO_{2} at $300^{\circ} \mathrm{C}$.
$2 \mathrm{NO}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})}$
Time $\quad\left[\mathrm{NO}_{2}\right] \mathrm{M}$

0.0	0.0100
50.0	0.0079
100.0	0.0065
200.0	0.0048
300.0	0.0038

i) Use graphical method to determine whether the reaction is a first or a second order reaction and its slope, hence deduce the rate equation.
b) If $\Delta \mathrm{G}=-\mathrm{nFE}$ cell and $\Delta \mathrm{G}^{\circ}=-\mathrm{nFE}^{\circ}$ cell. Use this information to derive the Nernst equation.
c) An electrochemical cell is based on the following two half reactions.

Anodereaction: $\mathrm{Cu}_{(\mathrm{s})} \rightarrow \mathrm{Cu}_{(\mathrm{sq}, 0.010 \mathrm{M})}^{2+}+2 \mathrm{e}^{-}$
Cathode reaction : $\mathrm{MnO}_{4(\mathrm{aq}, 2 \mathrm{M})}^{-}+4 \mathrm{H}_{(\mathrm{aq}, 1 \mathrm{M})}^{+}+3 \mathrm{e}^{-} \rightarrow \mathrm{MnO}_{2(\mathrm{~s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
If $\mathrm{Cu}_{(\mathrm{aq})}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}_{(\mathrm{s})} \quad \mathrm{E}^{\circ}=+0.34 \mathrm{~V}$ and
$\mathrm{MnO}_{4(\mathrm{aq})}^{-}+4 \mathrm{H}_{\text {(aq) })}^{+}+3 \mathrm{e}^{-} \rightarrow \mathrm{MnO}_{2(\mathrm{~s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \mathrm{E}^{\circ}=+1.68 \mathrm{~V}$ calculate the cell potential.(4 marks)

QUESTION FIVE (20 MARKS)

a) An electrochemical cell is created using Gold amd Magnesium half- cells.

Given that $\mathrm{E}_{\mathrm{Mg}^{2+} / \mathrm{Mg}}^{\circ}=-2.37 \mathrm{~V}^{\text {and }} \mathrm{E}_{\mathrm{Au}^{3+} / \mathrm{Au}}^{\circ}=+1.50 \mathrm{~V}$ and atomic mass $(\mathrm{Au})=197$ while that of
$(\mathrm{Mg})=24$
i) Determine which half cell will undergo oxidation and which will undergo reduction, identify anode and cathode and calculate the voltage of the cell (6 marks)
ii) If the mass of the magnesium electrode changes by 5.0 g , what will be the change in mass of the gold electrode, and will its mass increase or decrease?
b) The kinetics of decomposition of ozone $\mathrm{O}_{3(\mathrm{~g})} \rightarrow \mathrm{O}_{2(\mathrm{~g})}+\mathrm{O}_{(\mathrm{g})}^{*}$ was studied and the data below was obtained.

Temp (K)	Rate constant $\mathrm{M}^{-1} \mathrm{~S}^{-1}$	$\mathrm{~T}(\mathrm{~K})$	Rate constant $\mathrm{M}^{-1} \mathrm{~S}^{-1}$
600	3.37×10^{3}	1300	7.83×10^{7}
700	4.85×10^{4}	1400	1.45×10^{8}
800	3.58×10^{5}	1500	2.46×10^{8}
900	1.70×10^{6}	1600	3.93×10^{8}
1000	5.90×10^{6}	1700	5.93×10^{8}
1100	1.63×10^{7}	1800	8.55×10^{8}
1200	3.81×10^{7}	1900	1.19×10^{9}

Determine the value of the frequency factor and the activation energy for the reaction.

