UNIVERSITY OF EMBU

2017/2018 ACADEMIC YEAR

SECOND SEMESTER EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

SCH 205: GROUP THEORY AND ITS CHEMICAL APPLICATIONS

DATE:APRIL 4, 2018

TIME: 2:00-4:00PM

INSTRUCTIONS:

Answer Question ONE and any other TWO Questions

The periodic table of elements, a table of symmetry-adapted orbitals and selected character table are provided at the last page

OUESTION ONE (30 MARKS)

a) Using examples, briefly differentiate between symmetry element and symmetry operation.
b) Determine all the symmetry elements in the following molecules:
i) $\mathrm{H}_{2} \mathrm{O}$
ii) p-Dichlorobenzene
c) Explain the symmetry criteria that allow a molecule to be optically active?
d) Using diagrams as necessary, show that $\mathrm{S}_{2} \equiv \mathrm{i}$.
e) The CCl_{4} molecule belongs to the point group T_{d}. List the symmetry elements of the group and locate them in the molecule.
f) For cis-1,3-butadiene, of $C_{2 v}$ symmetry,
i) List all the symmetry operations for this molecule
ii) Write a set of transformation matrices that describe the effect of each symmetry operation in the $C_{2 \mathrm{v}}$ group on a set of coordinates $\mathrm{x}, \mathrm{y}, \mathrm{z}$ for a point.
g) List all the fundamental properties that a group must satisfy.

QUESTION TWO (20 MARKS)

a) Determine the symmetry elements that are lost in going from $\mathrm{NH}_{3}-$ to $\mathrm{NH}_{2} \mathrm{Cl}$?
b) List the symmetry operations and the corresponding symmetry elements of the point groups.
c) Explain the structure and content of a character table.

QUESTION THREE (20 MARKS)

a) Show that BF_{3} belongs to the $\mathrm{D}_{3 \mathrm{~h}}$ point group.
b) Using a diagram of boron trifluoride, show that three operations generated by C_{3} axis are C_{3}, C_{3}^{2} and E.
c) Find out the symmetry species of the normal modes of vibration of cis-planar $\mathrm{H}_{2} \mathrm{O}_{2}$.

QUESTION FOUR (20 MARKS)

a) Explain the term "Group" as relates to group theory.
b) Analysis of the x, y, and z coordinates of each atom in NH_{3} gives the following representation:

$C_{3 \mathrm{v}}$	E	$\mathbf{2 C} C_{3}$	$\mathbf{3} \sigma_{\mathrm{v}}$
Γ	12	0	2

i) Reduce Γ to its irreducible representations.
ii) Classify the irreducible representations into translational, rotational, and vibrational modes.
c) Molecules belonging to the point groups T_{h} or T_{d} cannot be chiral. Which elements of these groups rule out chirality?

OUESTION FIVE (20 MARKS)

a) Prove that $C_{2}^{z} \sigma_{\mathrm{xz}}$ and $\sigma_{\mathrm{xz}} C_{2}^{z}$ commute.
b) Use the symmetry of the atomic orbitals of the central atom to construct (using appropriate combinations of group orbitals peripheral atoms) the molecular orbital diagrams for $\mathrm{H}_{2} \mathrm{O}$.

Information you may require

Symmetry-adapted orbitals

Table 1 gives the symmetry classes of the s, p, and d orbitals of the central atom of an AB_{n} molecule of the specified point group. In most cases, the z-axis is the principal axis of the molecule; in $C_{2 v}$ the x-axis lies perpendicular to the molecular plane.

	$D_{\text {at }}$	$\mathrm{C}_{2 r}$	$D_{\text {3h }}$	$\mathrm{C}_{3 \mathrm{r}}$	$D_{\text {dit }}$	$C_{4 v}$	$D_{\text {sh }}$	$\mathrm{C}_{\text {ir }}$	$D_{\text {ch }}$	$\mathrm{C}_{6 r}$	$T_{山}$	O_{h}
s	Σ	${ }^{\text {A }}$	A_{1}^{\prime}	A_{1}	$\mathrm{A}_{1 /}$	A_{1}	A_{1}^{\prime}	A_{1}	$\mathrm{A}_{1 / \mathrm{R}}$	A_{1}	${ }_{\text {A }}$	$\mathrm{A}_{1 /}$
$\mathrm{P}_{\text {s }}$	Π	B_{1}	E^{\prime}	E	$\mathrm{E}_{\text {a }}$	E	E_{1}^{\prime}	E_{1}	E_{11}	E_{1}	T	T_{14}
P_{y}	Π	B_{2}	E'	E	E_{u}	E	E	E_{1}	E_{11}	E_{1}	T_{2}	T_{10}
$\mathrm{P}_{\text {s }}$	Σ	A_{1}	$\mathrm{A}_{2}^{\prime \prime}$	A_{1}	A_{20}	A_{1}	$A_{2}^{\prime \prime}$	A_{1}	A_{21}	A_{1}	T_{2}	T_{14}
$\mathrm{d}_{2^{2}}$	Σ	λ_{1}	A_{1}^{\prime}	A_{1}	A_{15}	A_{1}	A_{1}^{\prime}	A_{1}	$\mathrm{A}_{1 / \mathrm{F}}$	A_{1}	E	E_{*}
$\mathrm{d}_{x^{2}-y^{2}}$	Δ	A_{1}	E^{\prime}	E	B_{15}	B_{1}	E_{2}^{\prime}	E_{2}	E_{24}	E_{2}	E	E_{s}
d_{xy}	Δ	A_{2}	E^{\prime}	E	B_{2}	B_{2}	E_{2}^{\prime}	E_{2}	$\mathrm{E}_{2 \times}^{*}$	E_{2}	T_{2}	$\mathrm{T}^{\text {a }}$
d_{9}	II	B_{2}	E"	E	E_{E}	E^{2}	$\mathrm{E}_{1}^{\prime \prime}$	E_{1}	$\mathrm{E}_{\text {ER }}^{\text {ER }}$	E_{1}	T_{2}	$\mathrm{T}^{\text {2/ }}$
$\mathrm{d}_{2 \mathrm{~L}}^{2}$	Π	B_{1}	E"	E	$\mathrm{E}_{\mathrm{H}}^{*}$	E	$\mathrm{E}_{1}^{\prime \prime}$	E_{1}	$\mathrm{E}_{1 \mathrm{l}}^{18}$	E_{1}	T_{2}	$\mathrm{T}_{2 k}^{2 k}$

$A_{2}^{\prime} \quad A_{2}$

$\Pi_{0} \quad A_{2}$
$D_{3 \mathrm{~h}} \quad C_{30}$
$A_{1} \quad A_{1}$

E' E
$\Pi_{u} \quad B_{1}$

Σ_{u}

E. E

Selected Character Table

$C_{2 v}$ $(2 m m)$	E	C_{2}	$\sigma_{v}(x z)$	$\sigma_{v}^{\prime}(y z)$		
A_{1}	1	1	1	1	z	x^{2}, y^{2}, z^{2}
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	$x y$
$\mathrm{~B}_{1}$	1	-1	1	-1	x, R_{y}	$x z$
$\mathrm{~B}_{2}$	1	-1	-1	1	y, R_{x}	$y z$

$C_{3 v}$ $(3 m)$	E	$2 C_{3}$	$3 \sigma_{v}$		
$\mathrm{~A}_{1}$	1	1	1	z	$x^{2}+y^{2}, z^{2}$
$\mathrm{~A}_{2}$	1	1	-1	$R z$	
E	2	-1	0	$(x, y)\left(R_{x}, R_{y}\right)$	$\left(x^{2}-y^{2}, 2 x y\right)(x z, y z)$

| $C_{4 v}$
 $(4 m m)$ | E | $2 C_{4}$ | C_{2} | $2 \sigma_{v}$ | $2 \sigma_{\mathrm{d}}$ | | |
| :--- | :--- | ---: | ---: | ---: | ---: | :--- | :--- | :--- |
| A_{1} | 1 | 1 | 1 | 1 | 1 | $=$ | $x^{2}+y^{2}, z^{2}$ |
| $\mathrm{~A}_{2}$ | 1 | 1 | 1 | -1 | -1 | R_{z} | |
| $\mathrm{~B}_{1}$ | 1 | -1 | 1 | 1 | -1 | | $x^{2}-y^{2}$ |
| $\mathrm{~B}_{2}$ | 1 | -1 | 1 | -1 | 1 | | $x y$ |
| E | 2 | 0 | -2 | 0 | 0 | $(x, y)\left(R_{\mathrm{v}}, R_{y}\right)$ | $(x z, y z)$ |

--END--

