

UNIVERSITY OF EMBU

2017/2018 ACADEMIC YEAR

SECOND SEMESTER EXAMINATIONS

SECOND YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

SCH 205: GROUP THEORY AND ITS CHEMICAL APPLICATIONS

DATE:APRIL 4, 2018

INSTRUCTIONS:

Answer Question ONE and any other TWO Questions

The periodic table of elements, a table of symmetry-adapted orbitals and selected character table are provided at the last page

QUESTION ONE (30 MARKS)

a) Using examples, briefly differentiate between symmetry element and symmetry operation.

(4 marks)

TIME: 2:00-4:00PM

b) Determine all the symmetry elements in the following molecules:

(6 marks)

- i) H₂O
- ii) p-Dichlorobenzene
- c) Explain the symmetry criteria that allow a molecule to be optically active? (3 marks)
- d) Using diagrams as necessary, show that S₂≡i.

(4 marks)

- e) The CCl₄ molecule belongs to the point group T_d . List the symmetry elements of the group and locate them in the molecule. (3 marks)
- f) For cis-1,3-butadiene, of C_{2v} symmetry,
 - i) List all the symmetry operations for this molecule

(2 marks)

ii) Write a set of transformation matrices that describe the effect of each symmetry operation in the C_{2v} group on a set of coordinates x, y, z for a point. (4 marks)

g) List all the fundamental properties that a group must satisfy.

(4 marks)

QUESTION TWO (20 MARKS)

- a) Determine the symmetry elements that are lost in going from NH₃ to NH₂Cl? (5 marks)
- b) List the symmetry operations and the corresponding symmetry elements of the point groups.

(10 marks)

c) Explain the structure and content of a character table.

(5 marks)

QUESTION THREE (20 MARKS)

a) Show that BF3 belongs to the D3h point group.

(7 marks)

- b) Using a diagram of boron trifluoride, show that three operations generated by C₃ axis are C₃,
 C₃ and E.
 (6 marks)
- c) Find out the symmetry species of the normal modes of vibration of cis-planar H₂O₂.

(7 marks)

QUESTION FOUR (20 MARKS)

a) Explain the term "Group" as relates to group theory.

(2 marks)

b) Analysis of the x, y, and z coordinates of each atom in NH₃ gives the following representation:

C_{3v}	E	2C ₃	$3\sigma_{\rm v}$
Γ	12	0	2

Reduce Γ to its irreducible representations.

(7 marks)

- Classify the irreducible representations into translational, rotational, and vibrational modes.
 (6 marks)
- c) Molecules belonging to the point groups Th or Td cannot be chiral. Which elements of these groups rule out chirality? (5 marks)

QUESTION FIVE (20 MARKS)

a) Prove that C₂^z σ_{xz} and σ_{xz} C₂^z commute.

(6 marks)

b) Use the symmetry of the atomic orbitals of the central atom to construct (using appropriate combinations of group orbitals peripheral atoms) the molecular orbital diagrams for H₂O.

Information you may require

Symmetry-adapted orbitals

Table 1 gives the symmetry classes of the s, p, and d orbitals of the central atom of an AB_n molecule of the specified point group. In most cases, the z-axis is the principal axis of the molecule; in $C_{2\nu}$ the x-axis lies perpendicular to the molecular plane.

Table 1 Symmetry species of orbitals on the central atom

	$D_{\omega h}$	C_{2v}	$D_{_{3\mathrm{h}}}$	C_{3v}	$D_{ m 4h}$	C_{4v}	$D_{\rm sh}$	$C_{i_{\mathbf{v}}}$	D_{oh}	C_{6v}	$T_{\rm d}$	O _h
\$	Σ	Α,	A',	A,	A ₁ ,	A,	A'	A,	A _{ta}	A,	A,	Α,
,	П	В,	E,	E	E."	E	E.	E.	E.,	E,	Т,	T_{ij}
	П	В,	E'	E	E.	E	E'	E,	E _{Iu}	E,	т,	Ti
	Σ	A,	A,"	A,	A,	A,	A,"	A,	Α,	A,	т,	Th
.2	Σ	A,	A_{i}^{7}	A,	A ₁₀	A,	A'	A,	A _{la}	A,	E	E.,
.22	Δ	A,	Ε'	E	B	В,	E'	E,	E,	E,	E	E.
	Δ	Α,	E'	E	В,	В,	E',	E,	E.,,	E,	T,	Τ',
.,	П	В,	E"	E	E.*	E	E,"	E,	E _{to}	E,	Т,	T,
111	П	В,	E"	E	E.,	E	E''	E,	E'	E,	Τ,	T,

Selected Character Table

C _{2v} (2mm)	E	C_2	$\sigma_{v}(xz)$	$\sigma'_{v}(vz)$			
A_1	1	1	1	1	=	x^2, y^2, z^2	
A_2	1	1	-1	-1	R_z	xv	
B_1	1	-1	1	-1	x, R_y	NΞ	
B_2	1	-1	-1	1	ν , R_x	vz	

C _{3v} (3m)	Ε	$2C_3$	3σ _v		
A_1	1	1	1	2	$x^2 + y^2, z^2$
A_2	1	1	-1	R_z	
E	2	-1	0	$(x, y)(R_x, R_y)$	$(x^2 - y^2, 2xy)(xz, yz)$

C _{4v} (4mm)	Ε	2C ₄	C_2	$2\sigma_{\rm v}$	$2\sigma_{\rm d}$		
Aı	1	1	1	1	1	=	$x^2 + y^2$, z^2
A_2	1	1	1	-1	-1	R_z	
B_1	1	-1	1	1	-1		$x^2 - y^2$
B_2	1	-1	1	-1	1		NY
E	2	0	-2	0	0	$(x, y)(R_x, R_y)$	(xz, yz)