

JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY

UNIVERSITY EXAMINATIONS 2018/2019

THIRD YEAR EXAMINATION FOR BACHELOR OF SCIENCE IN ACTUARIAL SCIENCE/BIOSTATISTICS/FINANCIAL ENGINEERING/STATISTICS/OPERATIONS RESEARCH

SMA 2306: LINEAR ALGEBRA II

DATE: DECEMBER 2018 TIME: 2 HOURS INSTRUCTIONS: Answer question ONE and any other TWO questions **QUESTION ONE** a) Let M_{nn} be the vector space of $n \times n$ matrices. Determine whether $T: M_{nn} \to M_{nn}$ defined by $T(A) = \det(A)$ is a linear transformation The second secon b) Let $T: V \to W$ be a linear mapping with dim V = n and dim W = m. Show that If ker T = 0 then T is one-to-one (i) (3 marks) (ii) T is onto if rank(T) = m. (2 marks) c) In each part, use the given information to find the rank of the linear transformation T $T: \mathbb{R}^7 \to M_{32}$ has nullity 2 (1 mark) $T: P_3 \to \mathbb{R}$ has nullity 1 ii) (1 mark) The null space of $T: P_5 \rightarrow P_5$ is P_5 (2 marks) d) Let $f: R^3 \rightarrow R^3$ be defined by f(x, y, z) = (2x - 3y, y - 3z, x + 4y) and let $\{(1, 1, 2), (0, 1, 1), (-1, 0, 1)\}$ be a basis for R^3 . Find matrix A of f and a matrix B which is similar to A. (5 marks) e) Calculate | 4 0 0 | 3 3 3 -1 0 | 1 2 4 2 3 | 9 4 6 2 3 | 2 4 2 3 | (5 marks) f) Find a 3×3 matrix B that has the eigenvalues 1, -1, and 0, and for which are their corresponding eigenvectors (7 marks)

QUESTION TWO

a) Let
$$A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & -1 & 0 & 3 \end{bmatrix}$$

- i. Calculate the eigenvalues and the bases of the Eigenspaces of A (7 marks)
- ii. Calculate the eigenvalues and the bases of the Eigenspaces of A⁸ (5 marks)
- iii. Find a matrix P that diagonalizes A and a matrix D such that $D = P^{-1}AP$
- iv. Calculate the minimal polynomial of A (2 marks)
 (4 marks)

b) If
$$B = \begin{bmatrix} \lambda - 4 & 0 & 0 \\ 0 & \lambda & 2 \\ 0 & 3 & \lambda - 1 \end{bmatrix}$$
, find all values of λ for which det $B = 0$ (4 marks)

QUESTION THREE

- a) Let T: P₃ → P₂ be the mapping defined by T(a₀ + a₁x + a₂x² + a₃x³) = 5a₀ + a₃x²
 i) Find a basis for the kernel of T
 ii) Find a basis for the range of T
 (2 marks)
 (2 marks)
- b) If $T: V \to W$ is a linear transformation, show that the kernel of T is a subspace of V (5 marks)
- c) Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Show that
 - i) Show that A is diagonalizable if $(a-d)^2 + 4bc > 0$ (5 marks)
 - ii) Show that A is not diagonalizable if $(a-d)^2 + 4bc < 0$ (2 marks)
- d) Consider the basis $S = \{v_1, v_2\}$ for R^2 , where $v_1 = (-2, 1)$ and $v_2 = (1, 3)$, and let $T: R^2 \to R^3$ be the linear transformation such that $T(v_1) = (-1, 2, 0)$ and $T(v_2) = (0, -3, 5)$. Find a formula for $T(x_1, x_2)$ and use the formula to find T(2, -3) (5 marks)
- Show that the matrices $B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ are similar. (5 marks)

OUESTION FOUR

a) It can be proved that if a square matrix M is partitioned into block triangular form as $M = \begin{bmatrix} A & 0 \\ C & B \end{bmatrix}$ or $M = \begin{bmatrix} A & C \\ 0 & B \end{bmatrix}$, in which A and B are square matrices, then $\det(M) = \det(A) \det(B)$.

Use this result to compute the determinant of the matrix

$$M = \begin{bmatrix} 1 & 2 & 0 & 8 & 6 & -9 \\ 2 & 5 & 0 & 4 & 7 & 5 \\ -1 & 3 & 2 & 6 & 9 & -2 \\ \hline 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & -3 & 8 & -4 \end{bmatrix}$$

(3 marks)

b) Show that the matrix $A = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$ is invertible for all values of θ ; then find (7 marks)

c) Let
$$B = \begin{bmatrix} -1 & 7 & -1 \\ 0 & 1 & 0 \\ 0 & 15 & -2 \end{bmatrix}$$
 and $P = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 5 \end{bmatrix}$

(6 marks)

i) Confirm that P diagonalizes B

(1 mark)

ii) Determine the eigenvalues of B

(3 marks)

iii) Compute B¹¹