

JOMO KENYATTA UNIVERSITY

OF

AGRICULTURE AND TECHNOLOGY UNIVERSITY EXAMINATIONS 2016/2017

THIRD YEAR FIRST SEMESTER EXAMINATIONS FOR THE DEGREE OF
BACHELOR OF SCIENCE IN ACTUARIAL SCIENCE, FINANCIAL ENGINEERING,
STATISTICS, AND BIOSTATISTICS
STA 2302: PROBABILITY AND STATISTICS IV

DATE: DECEMBER 2016

TIME: 2 HOURS

INSTRUCTIONS: Answer question ONE and any other TWO questions.

QUESTION ONE (30 MARKS)

(a) Define a multivariate data, giving an example.

[2 marks]

(b) Give an expression for a non-singular multivariate normal distribution and state the conditions such a distribution must satisfy to be a p.d.f

[4 marks]

- (c) Define the following terms
- (i) Probability generating function of a random vector
- (ii) Central limit theorem with respect to a random vector

[4 marks]

- (d) Consider a random vector $\underline{X}^T = [X_1, X_2, ..., X_7]$. The distribution of X_i is bernoulli with parameter p. Determine the distribution of $Y = \sum_{i=1}^{n} X_i$.
- (e) Consider a random vector $\underline{X}^T = [X_1, X_2, X_3 X_4]$ has covariance matrix.

$$\Sigma = \begin{bmatrix} 5 & 1 & 1 & 2 \\ 1 & 4 & 1 & 2 \\ 1 & 1 & 3 & -1 \\ 2 & 2 & -1 & 2 \end{bmatrix}$$

Find the covariance matrix of the random vector $\underline{Y}^T = \{Y_1, Y_2, Y_3, Y_4\}$ where $Y_1 = 2X_1 + X_2 - X_3 + X_4$, $Y_2 = X_1 + X_2 + X_3 + 2X_4$, $Y_3 = X_1 + X_3 - 3X_4$ and

4 marks

(1) X is a p-variate normal random vector with mean μ and covarince matrix Σ . Let the random vector $Y = A^T X$ where A^T is a $q \times p$ matrix of constants. Use characteristic function to show that

$$Y \sim N(A^{\dagger}\mu, A^{\dagger}ZA).$$

(3 marke)

(g) Suppose that $X^T = [X_1, X_2, ..., X_p]$ are i.i.d random variable with a continuous distribution given by

$$f(X) = \left(\frac{1}{2\pi}\right)^{\frac{p}{2}} exp\left\{-\frac{1}{2}\sum_{i=1}^{p} X_i^2\right\}, \quad -\infty \leq X_i \leq \infty.$$
 Find the m.g.f of X .

[7 marks]

QUESTION TWO (20 MARKS)

(a) Consider a 3-variate random vector \underline{X} with joint probability density

$$f(\underline{x}) = \begin{cases} 6 e^{-(x_1 + x_2 + x_3)}, & x_3 > x_2 > x_1 > 0 \\ 0 & \text{elsewhere} \end{cases}$$

Find the moment generating function of X.

16 martsi

(b) The following are loss amounts in thousand dollars from three portfolio of insurance policies;

Determine the portfolio's

- (i) Mean vector
- (ii) Variance Covariance matrix

(iii) Correlation matrix

[14 marks]

QUESTION THREE (20 MARKS)

(a) Let $\underline{X}^T = [X_1, X_2, ..., X_p]$ be normally distributed with mean μ and covariance matrix Σ . Find the conditional distribution of \underline{X}_1 given that $\underline{X}_2 = \underline{x}_2$ where $\underline{X}^T = (\underline{X}_1^T, \underline{X}_2^T)$, \underline{X}_1 is a $q \times 1$ matrix and \underline{X}_2 is a $p - q \times 1$ matrix.

[12 marks]

(b) $X^T = [X_1, X_2, X_3, X_4]$ is normally distributed with mean vector $\underline{\mu}^T = [3, 6, 1, 7]$ and covariance matrix

$$\sum = \begin{cases} 11 & 5 & 2 & 3 \\ 5 & 4 & 1 & 0 \\ 2 & 1 & 3 & 0 \\ 3 & 0 & 0 & 2 \end{cases}.$$

Find the parameters of the distribution of
$$\underline{X}^T = \begin{bmatrix} X_1, X_3/\underline{X}_2 = & x_2 = 1 \\ & x_4 = 4 \end{bmatrix}$$
.

[8 marks]

QUESTION FOUR (20 MARKS)

46) = C. exp (-10)

The random vector $\underline{X}^T = [X_1, X_2, X_3]$ have a multivariate normal density given by $f(\underline{x}) = C.exp\left\{\frac{-1}{2}Q\right\}$ where $Q = \frac{1}{17}(11x_1^2 + 7x_2^2 + 5x_3^2 - 6x_1x_2 - 4x_1x_3 - 2x_2x_3 + 2x_4 - 16x_2 - 22x_3 + 48)$

Determine:

(1) μ and Σ

(11) The constant C

(iii) The marginal density of X_1, X_3

(iv) The conditional distribution of X_1 given $X_2 = 2$, $X_3 = 2$.

[20 marks]

ya. 10 - E (5) (66)