SCHOOL OF HOSPITALITY AND ENGINEERING
 ARTISAN IN FOOD PRODUCTION, PLUMBING AND ELECTRICAL INSTALLATION

SEPT 2019 INTAKE

END OF SEMESTER EXAMINATIONS

JAN- APRIL 2020

MATHEMATICS

0402/215, 0202/215

TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES

1. This paper has $\boldsymbol{S E V E N}$ questions.
2. Answer any FIVE questions in this paper.
3. Any examination IRREGULARITY will lead to DISQUALIFICATION.
4. Indicate your FULL ADMISSION NUMBER in each Answer Sheet used.
5. Cell phones are NOT allowed in the examination room.

QUESTION ONE

(a) Using elimination method, solve the following simultaneous equations
(i) $5 x+3 y=35$

$$
3 x-2 y=2
$$

(ii) $3 \mathrm{a}+2 \mathrm{~b}=12$

$$
4 a-b=5
$$

(iii) $2 \mathrm{x}+\mathrm{y}=12$

$$
\begin{equation*}
x-y=3 \tag{18mks}
\end{equation*}
$$

(b) Solve; $-x+4=-6$

QUESTION TWO

(a) Determine the value of x in the linear equations below
(i) $4(x-2)+4=3(2 x-3)$
(ii) $3(1-x)+4(x+3)=30$
(iii) $2(x+3)-3(x-5)=20$
(iv) $x / 2+x / 5=1$
(c) Solve for the unknowns
(i) $y / 4-1 / 4<5$
(ii) $\mathrm{x}^{3} / 4>\mathrm{x} / 2+5 / 2$

QUESTION THREE

(a) Using elimination method only, solve the following set of simultaneous linear equations
(i) $2 x+3 y=8$

$$
3 x+2 y=7
$$

(ii) $2 x+3 y=600$
$x+2 y=350$
(b). By use of graphical method, solve the following pair of simultaneous equations

$$
\begin{aligned}
& 2 y+x=8 \\
& 1+y=2 x
\end{aligned}
$$

QUESTION FOUR

(a) Solve by factorizing:
(i) $3 x^{2}-8 x+4=0$
(ii) $5 \mathrm{x}^{2}-13 \mathrm{x}-6=0$
(iii) $2 \mathrm{x}^{2}+7 \mathrm{x}-15=0$
(iv) $x^{2}-12 x+36$

QUESTION FOUR

(a) Using elimination method, solve the following set of simultaneous equations.

$$
\begin{aligned}
& 3 x+2 y=5 \\
& 2 x+3 y=4
\end{aligned}
$$

(b). Solve using quadratic formula method
$x^{2}+6 x=4$
(C). Evaluate;
(i) $-3(x-2)=5 x$
(ii) $2 \mathrm{y}(1+2)=8$

QUESTION FIVE

(a) Solve the following quadratic equations using factorization method
(i) $12 x^{2}-24 x+9=0$
(ii) $12 x^{2}+2 x-2=0$
(iii) $9 x^{2}-8 x-1=0$
(12mks)
(b) Solve the simultaneous equation below

$$
\begin{aligned}
& x^{2}+y=4 \\
& y-x=2
\end{aligned}
$$

QUESTION SIX

(a) Simplify, giving the results in index form.
(i) $7^{5} \times 7 \times 7^{2}$
(ii) $\left(2^{8}\right)^{3}$
(iii) $\mathrm{r}^{6} \mathrm{Xr}^{2} \mathrm{xr}^{9}$
(b) Express the following as positive indices.
(i) $2^{-6} \mathrm{a}$
(ii) $2^{-3} a^{-5}$
(iii) $3 a^{-4}$
(iv) $\left(a^{2} b^{-3}\right)^{-1}$
(c) Solve for a in:
(i) $2^{a}=1 / 64$
(ii) $3 \times 2^{a+5}=768$
(6mks)

QUESTION SEVEN

(a)The $4^{\text {th }}$ and the $10^{\text {th }}$ terms of an arithmetic sequence are 8 and 50 respectively. Find the $1^{\text {st }}$ term and the common difference.
(b) Solve the following linear equation
$4(x+5)-6(2 x+3)=3(x+14)-2(5-x)+9$
(3mks)
(c)Variable y is inversely proportional to x^{2}, and $\mathrm{y}=5$ when $\mathrm{x}=2$. Calculate:
(i) y when $\mathrm{x}=5$
(ii) x when $\mathrm{y}=8$
(a) T varies inversely as $\sqrt{ } \mathrm{S}$. If $\mathrm{T}=15$ when $\mathrm{S}=36$, calculate:
(i) T when $\mathrm{S}=49$
(ii) S when $\mathrm{T}=10$

