

SCHOOL OF HOSPITALITY AND ENGINEERING

ARTISAN IN FOOD PRODUCTION, PLUMBING AND ELECTRICAL INSTALLATION

SEPT 2019 INTAKE

END OF SEMESTER EXAMINATIONS

JAN-APRIL 2020

MATHEMATICS

0402/215, 0202/215

TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. This paper has **SEVEN** questions.
- 2. Answer any **FIVE** questions in this paper.
- 3. Any examination **IRREGULARITY** will lead to **DISQUALIFICATION**.
- 4. Indicate your FULL ADMISSION NUMBER in each Answer Sheet used.
- 5. Cell phones are **NOT** allowed in the examination room.

©MIT2019

QUESTION ONE

(a) Using elimination method, solve the following simultaneous equations

(i) 5x+3y = 35 3x-2y = 2(ii) 3a + 2b = 12 4a - b = 5(iii) 2x + y = 12 x - y = 3 (18mks) (b) Solve; -x + 4 = -6 (2mks)

QUESTION TWO

- (a) Determine the value of x in the linear equations below
 - (i) 4(x-2) + 4 = 3(2x-3)(ii) 3(1-x) + 4(x+3) = 30(iii) 2(x+3) - 3(x-5) = 20(iv) $\frac{x}{2} + \frac{x}{5} = 1$

(c) Solve for the unknowns

(i)
$$y_{4} - \frac{1}{4} < 5$$

(ii) $x^{-3}_{4} > \frac{x}{2} + \frac{5}{2}$ (8mks)

QUESTION THREE

(a) Using elimination method only, solve the following set of simultaneous linear equations

(i) 2x + 3y = 8

$$3x + 2y = 7$$

(ii) 2x + 3y = 600

x + 2y = 350

(10mks)

(12mks)

(b). By use of graphical method, solve the following pair of simultaneous equations

2y + x = 81 + y = 2x

(10mks)

QUESTION FOUR

- (a) Solve by factorizing:
- (i) $3x^2 8x + 4 = 0$
- (ii) $5x^2 13x 6 = 0$
- (iii) $2x^2 + 7x 15=0$
- (iv) $x^2 12x + 36$

(20mks)

QUESTION FOUR

(a) Using elimination method, solve the following set of simultaneous equations.

$$3x + 2y = 5$$

 $2x + 3y = 4$ (8mks)

2

(b).Solve using quadratic formula method

(C). Evaluate;

(i) $-3(x-2) = 5x$			

(ii) 2y (1+2) = 8

QUESTION FIVE

(a) Solve	the following quadratic equations using factorization method	
(i)	$12x^2 - 24x + 9 = 0$	
(ii)	$12x^2 + 2x - 2 = 0$	
(iii)	$9x^2 - 8x - 1 = 0$	(12mks)
(b) Solve	the simultaneous equation below	
$x^2 + y$	r = 4	
y - x	= 2	(8mks)

QUESTION SIX

(a) Simplify, giving the results in index form.

(i) $7^5 x 7 x 7^2$

(ii) $(2^8)^3$

(iii)
$$r^6 x r^2 x r^9$$

(b) Express the following as positive indices.

(i)
$$2^{-6}a$$

(ii) $2^{-3}a^{-5}$
(iii) $3a^{-4}$
(iv) $(a^2b^{-3})^{-1}$

(8mks)

(6mks)

(6mks)

(c) Solve for a in:
(i)
$$2^{a} = \frac{1}{_{64}}$$

(ii) $3 \ge 2^{a+5} = 768$ (6mks)

QUESTION SEVEN

(a)The 4^{th} and the 10^{th} terms of an arithmetic sequence are 8 and 50 respectively. Find the 1^{st} term and the common difference.

(5mks)

(b) Solve the following linear equation

4(x+5) - 6(2x+3) = 3(x+14) - 2(5-x) + 9(3mks)

- (c)Variable y is inversely proportional to x^2 , and y = 5 when x = 2. Calculate:
- (i) y when x = 5

(ii) x when
$$y = 8$$
 (6mks)

- (a) T varies inversely as \sqrt{S} . If T=15 when S=36,calculate:
 - (i) T when S=49
 - (ii) S when T = 10 (6mks)