Get premium membership and access revision papers, questions with answers as well as video lessons.

Borabu Masaba District Mock-Physics Paper3 Question Paper

Borabu Masaba District Mock-Physics Paper3 

Course:Secondary Level

Institution: Mock question papers

Exam Year:2012



NAME:……………………………………………………… INDEX NO:…………………………
SCHOOL:………………………………………………….. DATE:……………………………….
SIGN:………………………………..

232/3
PHYSICS
PAPER 3
(PRACTICAL)
JULY/AUGUST - 2012
TIME: 2 ½ HOURS


BORABU-MASABA DISTRICTS JOINT EVALUATION TEST– 2012
Kenya Certificate of Secondary Education (K.C.S.E)

232/3
PHYSICS
PAPER 3
(PRACTICAL)
JULY/AUGUST - 2012
TIME: 2 ½ HOURS


INSTRUCTIONS TO CANDIDATES

1. Write your name admission number and class in the spaces provided above.
2. Sign and write the date of examination in the spaces provided above.
3. Answer ALL the questions in the spaces provided in question paper.
4. You are supposed to spend the first 15 minutes of the 2 ½ hours allowed for this paper reading
the whole paper carefully before commencing your work.
5. Marks are given for a clear record of the observation actually made, their suitability, accuracy,
and the use made of them.
6. Candidates are advised to record their observations as soon as they are made.
7. Non-programmable silent electronic calculators and KNEC mathematical tables may be used.

1. You are provided with the following:
- seven resistors of resistance; Ry , 10 , 1O , 22 , 39 , 1O and 4 ;
- one cell (new size D);
- a switch;
- a jockey;
- a centre zero galvanometer;
- a resistance wire mounted on a millimeter scale;
- eight connecting wires, four with crocodile clips.
Proceed as follows:
(a) Set up the apparatus as shown in figure 1.

Figure 1
b) Place the crocodile clips as shown such that the resistance between them is 10 .
c) Close the switch and adjust the jockey J until there is balance (i.e the galvanometer
reading is zero)
d) Measure the distances L1 and L2 and record the values in Table 1.
e) Repeat the procedure in (b), (c) and (d) above for different values of resistance
R as shown in figure 1 and complete the table.
NB. The values of resistance R can be obtained by placing the crocodile clips at suitable points to give an appropriate combination of resistance R.
Table 1

Resistance R
10 20 42 81 91 95
Length L1 (cm)
Length L2 (cm)
L2 /L1

f) Plot a graph of L2 / L1 (y – axis) against R. (5mks)



































g) Determine the slope of the graph. (3mks)
.........................................................................................................................................................
.........................................................................................................................................................
.........................................................................................................................................................
.........................................................................................................................................................
h) Given the R = Ry x (L2/L1), determine:
(i) the reciprocal of the slope. (2mks)
.........................................................................................................................................................
.........................................................................................................................................................
(ii) Ry (2mks)
.........................................................................................................................................................
.........................................................................................................................................................
2. You are provided with the following:
- a metre rule;
- a retort stand, a boss and clamp;
- three pieces of thread;
- 200m1 of water in a 250ml beaker labelled W;
- 200m1 of a liquid in a 250m1 beaker labelled L;
- Two masses labelled m1 and m2.
Proceed as follows:
a) Suspend the metre rule so that it balances at its centre of gravity G and hang the
masses as in figure 2(a).
G = .................................................................................cm ( ½ mk)

Figure 2(a)
b) Position mass m2 at a distance x = 5 cm from the centre of gravity G and adjust the
position of ml so that the metre rule balance at G. Record the x1 of m2 from the point
G in table 2.
c) While maintaining the distance x = 5cm, immerse m2 completely in water. Adjust the position of m1 until the metre rule balances again (see figure 2(b)). Record the new distance x2.


d) Still maintaining the same distance x = 5cm, remove the beaker, W with water and
replace it with the beaker L with the liquid. Immerse m2 completely in the liquid. Adjust the position of ml until the metre rule balances again (see figure 2(c)). Record the new distance x3.
e) Remove mass m2 from the liquid and dry it with a tissue paper.
f) With the metre rule still suspended from its centre of gravity G, repeat the procedure in
(b), (c), (d) and (e) for other values of x given in table 2. Complete the table.
Distance x (cm) Distance x1 (cm) Distance x2 (cm) Distance x3 (cm) L0 = (x1 – x2)
(cm) L1 = (x1-x3)
(cm)
5
10
15
17
20
(9 ½ mks)






(g) Plot a graph of L0(y-axis) against L1 (5mks)



































(h) Find the slope S of the graph. (3mks)
.........................................................................................................................................................
.........................................................................................................................................................
.........................................................................................................................................................
.........................................................................................................................................................
.........................................................................................................................................................
.........................................................................................................................................................
(i) Find the value of k given that L1 = (2mks)
.........................................................................................................................................................
.........................................................................................................................................................
.........................................................................................................................................................
.........................................................................................................................................................
.........................................................................................................................................................
.........................................................................................................................................................




























More Question Papers


Popular Exams


Mid Term Exams

End Term 1 Exams

End Term 3 Exams

Opener Exams

Full Set Exams



Return to Question Papers