$\frac{\sqrt5 -2\sqrt3}{\sqrt2 + \sqrt{12}}$ is expression in surd form

      

$\frac{\sqrt5 -2\sqrt3}{\sqrt2 + \sqrt{12}}$ is expression in surd form
i) Write down the conjugate of the denominator in its simplest form
ii) Hence use the conjugate in (i) above to rationalize the denominator in the expression above

  

Answers


John
i) The conjugate of the denominator in simplest form

= $\sqrt2 \; - \sqrt12 \; = \; \sqrt2 \; - \; \sqrt{4\times 3}$

= $\sqrt2 -2\sqrt3$

ii) $\frac{(\sqrt5 \; 2\sqrt3)}{(\sqrt2 \; 2\sqrt3)}$ x $\frac{(\sqrt2 \; -2\sqrt3)}{(\sqrt2 \; 2\sqrt3)}$

$\frac{\sqrt{10} - 2\sqrt{15} - 2\sqrt6 \; + 4\times 3}{2\; 2\sqrt6 + 2\sqrt6 - 4 x 3}$

$\frac{\sqrt{10}\; 2\sqrt{15} \; 2\sqrt6 \; 12}{-10}$
johnmulu answered the question on March 7, 2017 at 06:12


Next: The dimensions of a rectangle are given as 8 cm by 5 cm. If A is the area of the rectangle and P is perimeter, determine the maximum possible value of
Previous: Solve for x in 2(log2x)2 - 7log2x + log28 = 0

View More Mathematics Questions and Answers | Return to Questions Index


Learn High School English on YouTube

Related Questions