Solve for y given that $log_2(2y\; + \;3)-\;2\; = log_2(y - 2)$

      

Solve for y given that
$log_2(2y\; + \;3)-\;2\; = log_2(y - 2)$

  

Answers


John
$log^2(2y\;+\;3)\;-log_24 = log_2(y-2)$

for expressing 2 as log<sub>2</sub>4

$log_2(\frac{2y+3}{4}) \; =\;log_2(y\;-\;2)$

$\frac{2y\;+\;3}{4}\;=\frac{y\;-\;2}{1}$

$2y\;+\;3\;=4y\;-\;8; 11y\; =\; 2y$

y = 5.5
johnmulu answered the question on March 8, 2017 at 04:48


Next: Evaluate (3 - $\sqrt7$)(3 + $\sqrt7$) hence simplify $\frac{2}{3\; -\sqrt7}$ - $\frac{2}{3\; +\sqrt7}$
Previous: Determine the centre and radius of a circle given by the equation $2x^2\;+\;2y^2\;-\;12\;=\;4x\;-\;12y$

View More Mathematics Questions and Answers | Return to Questions Index


Exams With Marking Schemes

Related Questions