Simplify: (4x + 3y + 3z) - (z - 4y + 2x)

      

Simplify:
a) (4x + 3y + 3z) - (z - 4y + 2x)
b) $\frac{3(x^2 - 9)}{x + 3}$

  

Answers


John
a) Open the brackets.

4x + 3y + 3z - z + 4y - 2x

Combine the like terms

4x - 2x + 3y + 4y + 3z - z

= 2x + 7y + 2z

b) Factorise the numerator to get

3(x - 3)(x + 3)

Therefore

$\frac{3(x^2 - 9)}{x + 3}$ = $\frac{3(x-3)}{}$

Reduces to 3(x-3) = 3x - 9.
johnmulu answered the question on March 9, 2017 at 06:44


Next: Use reciprocal and square tables to evaluate to 4 significant figures the expression $\frac{1}{24.56}$ + 4.3622
Previous: Simplify: $\frac{(6a + b)(a+ b) - 7b(a + b)}{2a^2 - 2b^2}$

View More Mathematics Questions and Answers | Return to Questions Index


Exams With Marking Schemes

Related Questions