Determine the percentage error for each of the following to two decimal places. (a)10.5+5.25 (b)10.5-5.25 (c)10.5×5.25 (d)10.5÷5.25

      

Class-Form Three Mathematics
Topic-Errors and Approximation

  

Answers


Jacktone
(a)First method
Max.sum=10.55+5.255=15.805
Min.sum=10.55-5.255=15.695
Actual sum=10.5+5.25=15.75
Abs.error=(15.805-15.75)/2=0.055
%error=(0.055÷15.75)×100 =0.3492%

Second method
Sum of absolute errors=0.05+0.005=0.055
% error={0.055÷(10.5+5.25)}×100=0.3492%

(b)First method
Max.difference=10.55-5.245=5.305
Min.difference=10.45-5.255=5.195
Actual difference=10.5-5.25=5.25
Abs.error=(5.305-5.195)/2=0.055
%error=(0.055÷5.25)×100 =1.048%

Second method
Sum of absolute errors=0.05+0.005=0.055
% error={0.055÷(10.5-5.25)}×100=1.048%

(c)First method
Max product=10.55×5.255=55.44025
Min product=10.45×5.245=54.81025
Working product=10.5×5.25=55.125
Absolute error=(55.44025-54.81025)=0.315
% error=(0.315÷55.125)×100=0.5714%

Second method
Absolute errors of 10.5 and 5.25 are 0.05 and 0.005 respectively
% error=(0.05/10.5+0.005/5.25)×100=0.5714%

(d)First method
Max quotient=10.55÷5.245=2.01143946615
Min quotient=10.45÷5.255=1.98858230256
Working quotient=10.5÷5.25=2
Absolute error=(2.01143946615-1.98858230256)=0.01142708179
% error=(0.01142708179÷2)×100=0.5714%

Second method
Absolute errors of 10.5 and 5.25 are 0.05 and 0.005 respectively
% error=(0.05/10.5+0.005/5.25)×100=0.5714%

jacktonenzoya answered the question on August 15, 2020 at 14:55


Next: A piece of paper measures 10.3 cm by 17.2 cm. Find the percentage error to 4 decimal places when calculating it's area.
Previous: Tambua kivumishi katika sentensi ifuatayo. Mwanafunzi mdogo amezungumza taratibu.

View More Mathematics Questions and Answers | Return to Questions Index


Exams With Marking Schemes

Related Questions