As a result of extensive cultivation of legumes (particularly soy, alfalfa, and clover), growing use of the Haber-Bosch process in the creation of chemical fertilizers, and pollution emitted by vehicles and industrial plants, human beings have more than doubled the annual transfer of nitrogen into biologically available forms. In addition, humans have significantly contributed to the transfer of nitrogen trace gases from Earth to the atmosphere, and from the land to aquatic systems. Human alterations to the global nitrogen cycle are most intense in developed countries and in Asia, where vehicle emissions and industrial agriculture are highest.
Nitrous oxide (N2O) has risen in the atmosphere as a result of agricultural fertilization, biomass burning, cattle and feedlots, and industrial sources. N2O has deleterious effects in the stratosphere, where it breaks down and acts as a catalyst in the destruction of atmospheric ozone. In the atmosphere nitrous oxide is a greenhouse gas, and is currently the third largest contributor to global warming, after carbon dioxide and methane. While not as abundant in the atmosphere as carbon dioxide, it is for an equivalent mass, nearly 300 times more potent in its ability to warm the planet.
Ammonia (NH3) in the atmosphere has tripled as the result of human activities. It is a reactant in the atmosphere, where it acts as an aerosol, decreasing air quality and clinging to water droplets, eventually resulting in nitric acid (HNO3) that produces acid rain.
Atmospheric ammonia and nitric acid damage respiratory systems.
All forms of high-temperature combustion have contributed to a 6 or 7 fold increase in the flux of NOx to the atmosphere. Its production is a function of combustion temperature - the higher the temperature, the more NOx is produced. Fossil fuel combustion is a primary contributor, but so are biofuels and even the burning of hydrogen. The higher combustion temperature of hydrogen produces more NOx than natural gas combustion. The very-high temperature of lightning produces small amounts of NOx, NH3, and HNO3.
Ammonia and nitrous oxides actively alter atmospheric chemistry. They are precursors of tropospheric (lower atmosphere) ozone production, which contributes to smog, and acid rain, damages plants and increases nitrogen inputs to ecosystems. Ecosystem processes can increase with nitrogen fertilization, but anthropogenic input can also result in nitrogen saturation, which weakens productivity and can damage the health of plants, animals, fish, and humans.
Decreases in biodiversity can also result if higher nitrogen availability increases nitrogen- demanding grasses, causing a degradation of nitrogen-poor, species diverse heathlands.
One health risk associated with drinking water (with >10 ppm nitrate) is the development of methemoglobinemia and has been found to cause blue baby syndrome. Several American states have now started programs to introduce advanced wastewater treatment systems to the typical onsite sewage facilities. The result of these systems is an overall reduction of nitrogen, as well as other contaminants in the waste water.
francis1897 answered the question on February 27, 2023 at 08:27